With the increasing use of the term “flash drought” within the scientific community, Otkin et al. provide a general definition that identifies flash droughts based on their unusually rapid rate of intensification. This study presents an objective percentile-based methodology that builds upon that work by identifying flash droughts using standardized evaporative stress ratio (SESR) values and changes in SESR over some period of time. Four criteria are specified to identify flash droughts: two that emphasize the vegetative impacts of flash drought and two that focus on the rapid rate of intensification. The methodology was applied to the North American Regional Reanalysis (NARR) to develop a 38-yr flash drought climatology (1979–2016) across the United States. It was found that SESR derived from NARR data compared well with the satellite-based evaporative stress index for four previously identified flash drought events. Furthermore, four additional flash drought cases were compared with the U.S. Drought Monitor (USDM), and SESR rapidly declined 1–2 weeks before a response was evident with the USDM. From the climatological analysis, a hot spot of flash drought occurrence was revealed over the Great Plains, the Corn Belt, and the western Great Lakes region. Relatively few flash drought events occurred over mountainous and arid regions. Flash droughts were categorized based on their rate of intensification, and it was found that the most intense flash droughts occurred over the central Great Plains, Corn Belt, and western Great Lakes region.
Flash drought is characterized by a period of rapid drought intensification with impacts on agriculture, water resources, ecosystems, and the human environment. Addressing these challenges requires a fundamental understanding of flash drought occurrence. This study identifies global hotspots for flash drought from 1980–2015 via anomalies in evaporative stress and the standardized evaporative stress ratio. Flash drought hotspots exist over Brazil, the Sahel, the Great Rift Valley, and India, with notable local hotspots over the central United States, southwestern Russia, and northeastern China. Six of the fifteen study regions experienced a statistically significant increase in flash drought during 1980–2015. In contrast, three study regions witnessed a significant decline in flash drought frequency. Finally, the results illustrate that multiple pathways of research are needed to further our understanding of the regional drivers of flash drought and the complex interactions between flash drought and socioeconomic impacts.
The 2010 western Russian heatwave was characterized by historically high surface temperatures that led to devastating impacts on the environment, economy, and society. Recent studies have attributed a quasi-stationary upper level ridge, sensible heat advection, and land-atmosphere temperature coupling as the primary components for the development of the heatwave event. The results in this study reveal that rapid drought intensification occurred prior to the extreme atmospheric conditions associated with the heatwave. The flash drought event developed from a lack of rainfall coupled with enhanced evaporative demand and resulted in rapid desiccation of the land surface. The region that underwent rapid drought intensification acted to prime the land-atmosphere interactions necessary to supplement the excessive surface temperatures experienced during the heatwave event. This area also provided a source region for the advection of warm, dry air to promote heatwave development downwind of the flash drought location. As such, the hydrometeorological extremes associated with the precursor flash drought and heatwave resulted in cascading impacts that severely affected ecosystems, agriculture, and human health. Given the findings from this research, we conclude that flash drought impacts should be expanded beyond vegetative and agricultural applications and should be viewed as a possible precursor and direct forcing for heatwave events and associated impacts.
During 2012, flash drought developed and subsequently expanded across large areas of the Central United States (US) with severe impacts to overall water resources and warm-season agricultural production. Recent efforts have yielded a methodology to detect and quantify flash drought occurrence and rate of intensification from climatological datasets via the standardized evaporative stress ratio (SESR). This study utilizes the North American Regional Reanalysis and applied the SESR methodology to quantify the spatial and temporal development and expansion of flash drought conditions during 2012. Critical results include the identification of the flash drought epicenter and subsequent spread of flash drought conditions radially outward with varying rates of intensification. Further, a comparison of the SESR analyses with surface-atmosphere coupling metrics demonstrated that a hostile environment developed across the region, which limited the formation of deep atmospheric convection, exacerbated evaporative stress, and perpetuated flash drought development and enhanced its radial spread across the Central US.
Abstract. The term “flash drought” is frequently invoked to describe droughts that develop rapidly over a relatively short timescale. Despite extensive and growing research on flash drought processes, predictability, and trends, there is still no standard quantitative definition that encompasses all flash drought characteristics and pathways. Instead, diverse definitions have been proposed, supporting wide-ranging studies of flash drought but creating the potential for confusion as to what the term means and how to characterize it. Use of different definitions might also lead to different conclusions regarding flash drought frequency, predictability, and trends under climate change. In this study, we compared five previously published definitions, a newly proposed definition, and an operational satellite-based drought monitoring product to clarify conceptual differences and to investigate the sensitivity of flash drought inventories and trends to the choice of definition. Our analyses indicate that the newly introduced Soil Moisture Volatility Index definition effectively captures flash drought onset in both humid and semi-arid regions. Analyses also showed that estimates of flash drought frequency, spatial distribution, and seasonality vary across the contiguous United States depending upon which definition is used. Definitions differ in their representation of some of the largest and most widely studied flash droughts of recent years. Trend analysis indicates that definitions that include air temperature show significant increases in flash droughts over the past 40 years, but few trends are evident for definitions based on other surface conditions or fluxes. These results indicate that “flash drought” is a composite term that includes several types of events and that clarity in definition is critical when monitoring, forecasting, or projecting the drought phenomenon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.