This paper considers the problem of scheduling streaming applications on uniprocessors in order to minimize the number of cache-misses. Streaming applications are represented as a directed graph (or multigraph), where nodes are computation modules and edges are channels. When a module fires, it consumes some data-items from its input channels and produces some items on its output channels. In addition, each module may have some state (either code or data) which represents the memory locations that must be loaded into cache in order to execute the module. We consider synchronous dataflow graphs where the input and output rates of modules are known in advance and do not change during execution. We also assume that the state size of modules is known in advance.Our main contribution is to show that for a large and important class of streaming computations, cache-efficient scheduling is essentially equivalent to solving a constrained graph partitioning problem. A streaming computation from this class has a cache-efficient schedule if and only if its graph has a low-bandwidth partition of the modules into components (subgraphs) whose total state fits within the cache, where the bandwidth of the partition is the number of data items that cross intercomponent channels per data item that enters the graph.Given a good partition, we describe a runtime strategy for scheduling two classes of streaming graphs: pipelines, where the graph consists of a single directed chain, and a fairly general class of directed acyclic graphs (dags) with some additional restrictions. The runtime scheduling strategy consists of adding large external buffers at the input and output edges of each component, allowing each component to be executed many times. Partitioning enables a reduction in cache misses in two ways. First, any items that are generated on edges internal to subgraphs are never written Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. SPAA '12, June 25-27, 2012, Pittsburgh, Pennsylvania, USA. Copyright 2012 ACM 978-1-4503-1213 out to memory, but remain in cache. Second, each subgraph is executed many times, allowing the state to be reused.We prove the optimality of this runtime scheduling for all pipelines and for dags that meet certain conditions on buffersize requirements. Specifically, we show that with constantfactor memory augmentation, partitioning on these graphs guarantees the optimal number of cache misses to within a constant factor. For the pipeline case, we also prove that such a partition can be found in polynomial time. For the dags we prove optimality if a good partition is provided; the partitioning problem itself is NP-complete.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.