The robustness of immune responses to an antigen could be dictated by the route of vaccine inoculation. Traditional smallpox vaccines, essentially vaccinia virus strains, that were used in the eradication of smallpox were administered by percutaneous inoculation (skin scarification). The modified vaccinia virus Ankara is licensed as a smallpox vaccine in Europe and Canada and currently undergoing clinical development in the United States. MVA is also being investigated as a vector for the delivery of heterologous genes for prophylactic or therapeutic immunization. Since MVA is replication-deficient, MVA and MVA-vectored vaccines are often inoculated through the intramuscular, intradermal or subcutaneous routes. Vaccine inoculation via the intramuscular, intradermal or subcutaneous routes requires the use of injection needles, and an estimated 10 to 20% of the population of the United States has needle phobia. Following an observation in our laboratory that a replication-deficient recombinant vaccinia virus derived from the New York City Board of Health strain elicited protective immune responses in a mouse model upon inoculation by tail scarification, we investigated whether MVA and MVA recombinants can elicit protective responses following percutaneous administration in mouse models. Our data suggest that MVA administered by percutaneous inoculation, elicited vaccinia-specific antibody responses, and protected mice from lethal vaccinia virus challenge, at levels comparable to or better than subcutaneous or intramuscular inoculation. High titers of specific neutralizing antibodies were elicited in mice inoculated with a recombinant MVA expressing the herpes simplex type 2 glycoprotein D after scarification. Similarly, a recombinant MVA expressing the hemagglutinin of attenuated influenza virus rgA/Viet Nam/1203/2004 (H5N1) elicited protective immune responses when administered at low doses by scarification. Taken together, our data suggest that MVA and MVA-vectored vaccines inoculated by scarification can elicit protective immune responses that are comparable to subcutaneous vaccination, and may allow for antigen sparing when vaccine supply is limited.
The vaccinia virus complement control protein (VCP) is a secreted viral protein that binds the C3b and C4b complement components and inhibits the classic and alternative complement pathways. Previously, we reported that an attenuated smallpox vaccine, LC16m8, which was derived from the Lister strain of vaccinia virus (VV-Lister), expressed a glycosylated form of VCP, whereas published sequence data at that time indicated that the VV-Lister VCP has no motif for N-linked glycosylation. We were interested in determining whether the glycosylation of VCP impairs its biological activity, possibly contributing to the attenuation of LC16m8, and the likely origin of the glycosylated VCP. Expression analysis indicated that VV-Lister contains substrains expressing glycosylated VCP and substrains expressing nonglycosylated VCP. Other strains of smallpox vaccine, as well as laboratory strains of vaccinia virus, all expressed nonglycosylated VCP. Individual Lister virus clones expressing either the glycosylated VCP or the nonglycosylated species were isolated, and partially purified VCP from the isolates were found to be functional equivalents in binding human C3b and C4b complement proteins and inhibiting hemolysis and in immunogenicity. Recombinant vaccinia viruses expressing FLAG-tagged glycosylated VCP (FLAG-VCPg) and nonglycosylated VCP (FLAG-VCP) were constructed based on the Western Reserve strain. Purified FLAG-VCP and FLAG-VCPg bind human C3b and C4b and blocked complement-mediated hemolysis. Our data suggest that glycosylation did not affect the biological activity of VCP and thus may not have contributed to the attenuation of LC16m8. In addition, the LC16m8 virus likely originated from a substrain of VVLister that expresses glycosylated VCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.