The Allier River and its alluvial aquifer constitute a shallow but highly productive water resource due to their hydrodynamic properties. This hydrosystem provides almost all of the water requirements for domestic supply and irrigation. Recent dry summers (such as those in 2015, 2019, and 2022) and the lack of winter recharge have led managers to question the sustainability of this resource. We proposed the use of hydrological modelling with Gardenia with which the water balance can be determined at the watershed scale (7020 km2) and with which forecasting simulations can be performed for 2030–2070. Thus, this work was divided into (1) model calibration (2000–2020), (2) the determination of the main drivers of the water balance (2000–2020), (3) and river flow and groundwater level simulation (2030–2070). For the latter, Gardenia was used considering a “better case”, using the RCM Aladin63 in RCP2.6, and considering a “worst case”, using the RCM RegCM4-6 in RCP8.5. The calibration for 2000–2014 showed good reproducibility of river flows (NSE = 0.91) and groundwater levels (NSE = 0.85). The model showed that the major drivers in 2000–2020 were actual evapotranspiration and effective precipitation, which, respectively, represented 68% and 32% of mean annual precipitation. Water withdrawals did not significantly contribute to the water balance with the exception of those in very dry summers, such as those in 2003, 2005, 2015, and 2019. Climate appeared, therefore, as a prevalent factor of the Allier hydrosystem functioning compared to global withdrawals except for that during these dry years. Prospective simulations showed a decline in annual river flows and groundwater levels by a maximum of −15% and −0.08 m asl (“worst case”), respectively. These simulations showed that the Allier hydrosystem will be able to meet the water needs for various uses until 2070. In detail, it is likely that summer shortages will no longer be compensated by the Naussac Dam if the hydrosystem faces more than two years of drought. In this case, water-saving solutions will have to be found. This study is, thus, a good example of the application of hydrological modelling to address management issues in such a hydrosystem.
We demonstrate the potential of Brillouin distributed fiber sensor for the measurement of groundwater flow in an experimental site of Port Douvot close to the city of Besan¸con. The flow measurement is obtained by using active heating method based on heat pulse instrument. An industrial sensor cable with single mode fiber and multimode fiber was immersed on ground. We compare distributed Brillouin sensor reflectometry (BOTDR) and Analysis (BOTDA) on single mode fiber (SMF) and multimode optical fiber (MMF) with a spatial resolution of 1 m, a temperature resolution of 0.2 °C and an acquisition time of 1 min. These parameters are compatible with hydrology application. Active heating of borehole water in conjunction with fiber optic distributed temperature sensor measurements are realized. Contrary to Raman based distributed temperature sensor, Brillouin instrument allows measuring absolute temperature measurement and simplify the implementation on the setup. We demonstrate in this paper that Brillouin scattering based temperature sensor can be used for hydrogeology application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.