Modern power systems have begun integrating synchrophasor technologies into part of daily operations. Given the amount of solutions offered and the maturity rate of application development it is not a matter of "if" but a matter of "when" in regards to these technologies becoming ubiquitous in control centers around the world. While the benefits are numerous, the functionality of operator-level applications can easily be nullified by injection of deceptive data signals disguised as genuine measurements. Such deceptive action is a common precursor to nefarious, often malicious activity. A correlation coefficient characterization and machine learning methodology are proposed to detect and identify injection of spoofed data signals. The proposed method utilizes statistical relationships intrinsic to power system parameters, which are quantified and presented. Several spoofing schemes have been developed to qualitatively and quantitatively demonstrate detection capabilities.
Phasor measurement units provide real-time power system monitoring. We present a data analysis method that leverages statistical correlation and analysis methods to identify power system events. This research uses archived phasor measurement unit data to show that the method is useful for detecting power system events. Results from a lighting strike case study are presented. A monitoring stratagem based on PMU clustering is discussed, and the viability of monitoring pertinent statistical parameters over various clustering schemes is demonstrated.
Increased adoption and deployment of phasor measurement units (PMU) has provided valuable fine-grained data over the grid. Analysis over these data can provide insight into the health of the grid, thereby improving control over operations. Realizing this data-driven control, however, requires validating, processing and storing massive amounts of PMU data. This paper describes a PMU data management system that supports input from multiple PMU data streams, features an event-detection algorithm, and provides an efficient method for retrieving archival data. The eventdetection algorithm rapidly correlates multiple PMU data streams, providing details on events occurring within the power system. The event-detection algorithm feeds into a visualization component, allowing operators to recognize events as they occur. The indexing and data retrieval mechanism facilitates fast access to archived PMU data. Using this method, we achieved over 30× speedup for queries with high selectivity. With the development of these two components, we have developed a system that allows efficient analysis of multiple time-aligned PMU data streams.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.