Maternal smoking during pregnancy, a form of developmental nicotine exposure (DNE), is associated with increased nicotine use and neurodevelopmental disorders such as ADHD in children. Here, we characterize the behavioral, rhythmometric, neuropharmacological, and epigenetic consequences of DNE in the F1 (first) and F2 (second) generation adolescent offspring of mice exposed to nicotine prior to and throughout breeding. We assessed the effects of passive oral methylphenidate (MPH) administration and voluntary nicotine consumption on home cage activity rhythms and activity and risk-taking behaviors in the open field. Results imply a multigenerational predisposition to nicotine consumption in DNE mice and demonstrate ADHDlike diurnal and nocturnal hyperactivity and anomalies in the rhythmicity of home cage activity that are reversibly rescued by MPH and modulated by voluntary nicotine consumption. DNE mice are hyperactive in the open field and display increased risk-taking behaviors that are normalized by MPH. Pharmacological characterization of nicotinic and dopaminergic systems in striatum and frontal cortex reveals altered expression and dysfunction of nicotinic acetylcholine receptors (nAChRs), hypersensitivity to nicotine-induced nAChR-mediated dopamine release, and impaired dopamine transporter (DAT) function in DNE mice. Global DNA methylation assays indicate DNA methylome deficits in striatum and frontal cortex of DNE mice. Collectively, our data demonstrate that DNE enhances nicotine preference, elicits hyperactivity and risk-taking behaviors, perturbs the rhythmicity of activity, alters nAChR expression and function, impairs DAT function, and causes DNA hypomethylation in striatum and frontal cortex of both first and second-generation adolescent offspring. These findings recapitulate multiple domains of ADHD symptomatology.
Methamphetamine use among adolescents is a significant social and public health concern. Despite increased awareness of methamphetamine use among younger people, relatively little research has examined the effects of adolescent methamphetamine use compared to adult use. Thus, much remains to be learned about how methamphetamine alters adolescent brain function and behavior. In this article we review recent trends in adolescent methamphetamine use and data examining the effects of adolescent methamphetamine use on the dopaminergic system and behavior in humans and animal models. Future research is warranted to expand our understanding of the effects of adolescent methamphetamine exposure and how those effects differ from those seen in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.