Combustion instability is a major issue facing lean, premixed combustion approaches in modern gas turbine applications. This paper specifically focuses on instabilities that excite transverse acoustic modes of the combustion chamber. Recent simulation and experimental studies have shown that much of the flame response during transverse instabilities is due to the longitudinal fluid motions induced by the fluctuating pressure field above a nozzle. In this study, we analyze the multi-dimensional acoustic field excited by transverse acoustic disturbances interacting with an annular side branch, emulating a fuel/air mixing nozzle. Key findings of this work show that the resultant velocity fields are critically dependent upon the structure of the transverse acoustic field and the nozzle impedance. Significantly, we also show that certain cases can be understood from relatively simple quasi one-dimensional considerations, but that other cases are intrinsically three-dimensional.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.