Summary 1.Understanding the spatial structure of populations is important in developing effective management strategies for feral and invasive species, such as feral pigs Sus scrofa. World-wide, feral pigs can act as 'triple threat' pests, impacting upon biodiversity, agricultural production and public health; in Australia they are a significant vertebrate pest. We utilized a molecular approach to investigate the structure of populations of feral pigs in south-western Australia. These approaches have been underutilized in pest management. 2. Using 14 highly polymorphic microsatellite markers from 276 adult pigs, we identified eight inferred (K = 8) pig populations that would be difficult to define with standard ecological techniques. All populations had moderate heterozygosity (H E = 0·680) and moderate to high levels of differentiation (F ST = 0·118; R ST = 0·132) between populations. 3. The molecular approach identified feral pig groups that appeared to be acting as a source for reinvasion following control operations. It also identified populations where current control measures were less successful in reducing 'effective population size'. Additionally, the data indicated that dispersal rates between, but not within, the inferred feral pig populations were relatively low. 4. The potential for the spread of directly transmitted wildlife diseases between the pig populations studied was low. However, under some circumstances, such as within major river catchments, the role of feral pigs in the transmission of endemic or exotic diseases is likely to be high. Synthesis and applications.A molecular-based approach allowed us to determine the genetic structure and dispersal patterns of a cryptic, destructive and invasive vertebrate pest. Our results indicated that the feral pig populations studied were unlikely to be acting as closed populations and, importantly, it identified where movement between groups was likely to occur. This should lead to more informed decisions for managing the potential risk posed by feral species, such as pigs, in the transmission of wildlife diseases. The suggested technique could help in understanding the dynamics of many other freeranging pest animal populations.
Abstract. Deer are among the world's most successful invasive mammals and can have substantial deleterious impacts on natural and agricultural ecosystems. Six species have established wild populations in Australia, and the distributions and abundances of some species are increasing. Approaches to managing wild deer in Australia are diverse and complex, with some populations managed as 'game' and others as 'pests'. Implementation of cost-effective management strategies that account for this complexity is hindered by a lack of knowledge of the nature, extent and severity of deer impacts. To clarify the knowledge base and identify research needs, we conducted a systematic review of the impacts and management of wild deer in Australia. Most wild deer are in south-eastern Australia, but bioclimatic analysis suggested that four species are well suited to the tropical and subtropical climates of northern Australia. Deer could potentially occupy most of the continent, including parts of the arid interior. The most significant impacts are likely to occur through direct effects of herbivory, with potentially cascading indirect effects on fauna and ecosystem processes. However, evidence of impacts in Australia is largely observational, and few studies have experimentally partitioned the impacts of deer from those of sympatric native and other introduced herbivores. Furthermore, there has been little rigorous testing of the efficacy of deer management in Australia, and our understanding of the deer ecology required to guide deer management is limited. We identified the following six priority research areas: (i) identifying long-term changes in plant communities caused by deer; (ii) understanding interactions with other fauna; (iii) measuring impacts on water quality; (iv) assessing economic impacts on agriculture (including as disease vectors); (v) evaluating efficacy of management for mitigating deer impacts; and (vi) quantifying changes in distribution and abundance. Addressing these knowledge gaps will assist the development and prioritisation of cost-effective management strategies and help increase stakeholder support for managing the impacts of deer on Australian ecosystems.
There is much interest in understanding how anthropogenic food resources subsidise carnivore populations. Carcasses of hunter-shot ungulates are a potentially substantial food source for mammalian carnivores. The sambar deer (Rusa unicolor) is a large (≥150 kg) exotic ungulate that can be hunted throughout the year in south-eastern Australia, and hunters are not required to remove or bury carcasses. We investigated how wild dogs/dingoes and their hybrids (Canis lupus familiaris/dingo), red foxes (Vulpes vulpes) and feral cats (Felis catus) utilised sambar deer carcasses during the peak hunting seasons (i.e. winter and spring). We placed carcasses at 1-km intervals along each of six transects that extended 4-km into forest from farm boundaries. Visits to carcasses were monitored using camera traps, and the rate of change in edible biomass estimated at ∼14-day intervals. Wild dogs and foxes fed on 70% and 60% of 30 carcasses, respectively, but feral cats seldom (10%) fed on carcasses. Spatial and temporal patterns of visits to carcasses were consistent with the hypothesis that foxes avoid wild dogs. Wild dog activity peaked at carcasses 2 and 3 km from farms, a likely legacy of wild dog control, whereas fox activity peaked at carcasses 0 and 4 km from farms. Wild dog activity peaked at dawn and dusk, whereas nearly all fox activity occurred after dusk and before dawn. Neither wild dogs nor foxes remained at carcasses for long periods and the amount of feeding activity by either species was a less important predictor of the loss of edible biomass than season. Reasons for the low impacts of wild dogs and foxes on sambar deer carcass biomass include the spatially and temporally unpredictable distribution of carcasses in the landscape, the rapid rate of edible biomass decomposition in warm periods, low wild dog densities and the availability of alternative food resources.
Ethical treatment of wildlife and consideration of animal welfare have become important themes in conservation, but ethical perspectives on how best to protect wild animals and promote their welfare are diverse. There are advantages to the consequentialist harms ethical framework applied in managing wild herbivores for conservation purposes. To minimize harms while achieving conservation goals, we argue that overabundant wild herbivores should in many cases be managed through consumptive in situ killing. Advantages of this policy are that the negative welfare states imposed on animals last only a short time; remaining animals are not deprived of positive welfare states (e.g., linked to rearing offspring); poor welfare states of animals in overabundant populations are avoided (e.g., starvation); negative welfare impacts on heterospecifics through resource depletion (i.e., competition) are prevented; harvesting meat reduces the number of (agricultural) animals raised to supply meat; and minimal costs maximize funding for other wildlife management and conservation priorities. Alternative ethical approaches to our consequentialist framework include deontology (containing animal rights) and virtue ethics, some of which underpin compassionate conservation. These alternative ethical approaches emphasize the importance of avoiding intentional killing of animals but, if no population reduction occurs, are likely to impose considerable unintentional harms on overabundant wildlife and indirectly harm heterospecifics through ineffective population reduction. If nonlethal control is used, it is likely that overabundant animals would be deprived of positive welfare states and economic costs would be prohibitive. We encourage conservation stakeholders to consider animal‐welfare consequentialism as an ethical approach to minimize harms to the animals under their care as well as other animals that policies may affect while at the same time pursuing conservation goals.
“Social license to operate” (SLO) refers to the implicit process by which a community gives an industry approval to conduct its current business activities. It has become an important focus for many natural resource management fields (especially mining), but there is less awareness of its role in animal use industries. This article describes how animal welfare has recently become arguably the most crucial consideration underpinning the SLO for Australian animal use industries. It describes several industries in Australia that have faced animal welfare scrutiny in the past decade (2010–2020) to illustrate how persistent issues can erode SLO, lead to regulatory bans, and decimate previously profitable industries. Industries described include the live export of livestock, greyhound and horse racing, kangaroo harvesting, and dairy and sheep farming. In these cases, there has been intense public discourse but little scholarly progress. This article examines factors that may have contributed to these developments and suggests approaches that may assist these industries in maintaining their SLO. Animal welfare has become a mainstream societal concern in Australia, and effective management of the community’s expectations will be essential for the maintenance of SLO for many animal use industries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.