The cyclotron resonance of monolayer graphene, encapsulated in hexagonal boron nitride and with a graphite backgate, is explored via infrared transmission magnetospectroscopy as a function of the filling factor at fixed magnetic fields. The impact of many-particle interactions in the regime of broken spin and valley symmetries is observed spectroscopically. As the occupancy of the zeroth Landau level is increased from half-filling, a nonmonotonic progression of multiple cyclotron resonance peaks is seen for several interband transitions, revealing the evolution of underlying many-particle-enhanced gaps. Analysis of the peak energies shows significant exchange enhancements of spin gaps both at and below the Fermi energy, a strong filling-factor dependence of the substrate-induced Dirac mass, and also the smallest particle-hole asymmetry reported to date in graphene cyclotron resonance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.