Generating and executing temporal plans is difficult in uncertain environments. The current state-of-the-art algorithm for probabilistic temporal networks maintains a high success rate by rescheduling frequently as uncertain events are resolved, but this approach involves substantial resource overhead due to computing and communicating new schedules between agents. Aggressive rescheduling could thus reduce overall mission duration or success in situations where agents have limited energy or computing power, and may not be feasible when communication is limited. In this paper, we propose new approaches for heuristically deciding when rescheduling is most efficacious. We propose two compatible approaches, Allowable Risk and Sufficient Change, that can be employed in combination to compromise between the computation rate, the communication rate, and success rate for new schedules. We show empirically that both approaches allow us to gracefully trade success rate for lower computation and/or communication as compared to the state-of-the-art dynamic scheduling algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.