A real-time understanding of the distribution and duration of power outages after a major disaster is a precursor to minimizing their harmful consequences. Here, we develop an approach for using daily satellite nighttime lights data to create spatially disaggregated power outage estimates, tracking electricity restoration efforts after disasters strike. In contrast to existing utility data, these estimates are independent, open, and publicly-available, consistently measured across regions that may be serviced by several different power companies, and inclusive of distributed power supply (off-grid systems). We apply the methodology in Puerto Rico following Hurricane Maria, which caused the longest blackout in US history. Within all of the island’s settlements, we track outages and recovery times, and link these measures to census-based demographic characteristics of residents. Our results show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the northern and eastern districts. Unexpectedly, we also identify large disparities in electricity recovery between neighborhoods within the same urban area, based primarily on the density of housing. For many urban areas, poor residents, the most vulnerable to increased mortality and morbidity risks from power losses, shouldered the longest outages because they lived in less dense, detached housing where electricity restoration lagged. The approach developed in this study demonstrates the potential of satellite-based estimates of power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial resolution that is actionable for the disaster response community.
Analysis was performed to determine whether a lightning flash could be associated with every reported lightning-initiated wildfire that grew to at least 4 km2. In total, 905 lightning-initiated wildfires within the Continental United States (CONUS) between 2012 and 2015 were analyzed. Fixed and fire radius search methods showed that 81–88% of wildfires had a corresponding lightning flash within a 14 day period prior to the report date. The two methods showed that 52–60% of lightning-initiated wildfires were reported on the same day as the closest lightning flash. The fire radius method indicated the most promising spatial results, where the median distance between the closest lightning and the wildfire start location was 0.83 km, followed by a 75th percentile of 1.6 km and a 95th percentile of 5.86 km. Ninety percent of the closest lightning flashes to wildfires were negative polarity. Maximum flash densities were less than 0.41 flashes km2 for the 24 h period at the fire start location. The majority of lightning-initiated holdover events were observed in the Western CONUS, with a peak density in north-central Idaho. A twelve day holdover event in New Mexico was also discussed, outlining the opportunities and limitations of using lightning data to characterize wildfires.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.