Remote sensing of night light emissions in the visible band offers a unique opportunity to directly observe human activity from space. This has allowed a host of applications including mapping urban areas, estimating population and GDP, monitoring disasters and conflicts. More recently, remotely sensed night lights data have found use in understanding the environmental impacts of light emissions (light pollution), including their impacts on human health. In this review, we outline the historical development of night-time optical sensors up to the current state of the art sensors, highlight various applications of night light data, discuss the special challenges associated with remote sensing of night lights with a focus on the limitations of current sensors, and provide an outlook for the future of remote sensing of night lights. While the paper mainly focuses on space borne remote sensing, ground based sensing of night-time brightness for studies on astronomical and ecological light pollution, as well as for calibration and validation of space borne data, are also discussed. Although the development of night light sensors lags behind day-time sensors, we demonstrate that the field is in a stage of rapid development.The worldwide transition to LED lights poses a particular challenge for remote sensing of night lights, and strongly highlights the need for a new generation of space borne night lights instruments. This work shows that future sensors are needed to monitor temporal changes during the night (for example from a geostationary platform or constellation of satellites), and to better understand the angular patterns of light emission (roughly analogous to the BRDF in daylight sensing). Perhaps most importantly, we make the case that higher spatial resolution and multispectral sensors covering the range from blue to NIR are needed to more effectively identify lighting technologies, map urban functions, and monitor energy use.
A real-time understanding of the distribution and duration of power outages after a major disaster is a precursor to minimizing their harmful consequences. Here, we develop an approach for using daily satellite nighttime lights data to create spatially disaggregated power outage estimates, tracking electricity restoration efforts after disasters strike. In contrast to existing utility data, these estimates are independent, open, and publicly-available, consistently measured across regions that may be serviced by several different power companies, and inclusive of distributed power supply (off-grid systems). We apply the methodology in Puerto Rico following Hurricane Maria, which caused the longest blackout in US history. Within all of the island’s settlements, we track outages and recovery times, and link these measures to census-based demographic characteristics of residents. Our results show an 80% decrease in lights, in total, immediately after Hurricane Maria. During the recovery, a disproportionate share of long-duration power failures (> 120 days) occurred in rural municipalities (41% of rural municipalities vs. 29% of urban municipalities), and in the northern and eastern districts. Unexpectedly, we also identify large disparities in electricity recovery between neighborhoods within the same urban area, based primarily on the density of housing. For many urban areas, poor residents, the most vulnerable to increased mortality and morbidity risks from power losses, shouldered the longest outages because they lived in less dense, detached housing where electricity restoration lagged. The approach developed in this study demonstrates the potential of satellite-based estimates of power recovery to improve the real-time monitoring of disaster impacts, globally, at a spatial resolution that is actionable for the disaster response community.
Flood events and their impact on crops are extremely significant scientific research issues; however, flood monitoring is an exceedingly complicated process. Flood damages on crops are directly related to yield change, which requires accurate assessment to quantify the damages. Various remote sensing products and indices have been used in the past for this purpose. This paper utilizes the moderate resolution imaging spectroradiometer (MODIS) weekly normalized difference vegetation index (NDVI) product to detect and further quantify flood damages on corn within the major corn producing states in the Midwest region of the US. County-level analyses were performed by taking weighted average of all pure corn pixels (>90%) masked by the United States Department of Agriculture (USDA) Cropland Data Layer (CDL). The NDVI-based time-series difference between flood years and normal year (median of years 2000-2014) was used to detect flood occurrences. To further measure the impact of the flood on corn yield, regression analysis between change in NDVI and change in corn yield as independent and dependent variables respectively was performed for 30 different flooding events within growing seasons of the corn. With the R 2 value of 0.85, the model indicates statistically significant linear relation between the NDVI and corn yield. Testing the predictability of the model with 10 new cases, the average relative error of the model was only 4.47%. Furthermore, small error (0.48) of leave-one-out cross validation (LOOCV) along with smaller statistical error indicators (root mean square error (RMSE), mean absolute error (MAE), and mean bias error (MBE)), further validated the accuracy of the model. Utilizing the linear regression approach, change in NDVI during the growing season of corn appeared to be a good indicator to quantify the yield loss due to flood. Additionally, with the 250 m MODIS-based NDVI, these yield losses can be estimated up to field level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.