This study used an advanced airflow, energy and humidity modelling tool to evaluate the potential for residential mechanical pre-cooling strategies to reduce peak electricity demand. Simulations were performed for a typical new home in all US DOE Climate Zones. The results show that the effectiveness of pre-cooling is highly dependent on climate zone and the selected pre-cooling strategy. The expected energy trade-off between cooling peak energy savings and increased off-peak energy use is also shown. Best pre-cooling results for most climates were obtained using a short pre-cooling time window with a high pre-cooling set point temperature. All pre-cooling strategies caused the annual cooling energy demand of the simulated buildings to increase. However, pre-cooling for long time periods with a low temperature set point can eliminate up to 97% of the annual peak cooling load of the building.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.