Fludarabine is a nucleoside analog with antileukemic and immunosuppressive activity commonly used in allogeneic hematopoietic cell transplantation (HCT). Several fludarabine population pharmacokinetic (popPK) and pharmacodynamic models have been published enabling the movement towards precision dosing of fludarabine in pediatric HCT; however, developed models have not been validated in a prospective cohort of patients. In this multicenter pharmacokinetic study, fludarabine plasma concentrations were collected via a sparse-sampling strategy. A fludarabine popPK model was evaluated and refined using standard nonlinear mixed effects modelling techniques. The previously described fludarabine popPK model well-predicted the prospective fludarabine plasma concentrations. Individuals who received model-based dosing (MBD) of fludarabine achieved significantly more precise overall exposure of fludarabine. The fludarabine popPK model was further improved by both the inclusion of fat-free mass instead of total body weight and a maturation function on fludarabine clearance. The refined popPK model is expected to improve dosing recommendations for children younger than 2 years and patients with higher body mass index. Given the consistency of fludarabine clearance and exposure across its multiple days of administration, therapeutic drug monitoring is not likely to improve targeted exposure attainment.
Background: With a notably narrow therapeutic window and wide intra- and interindividual pharmacokinetic (PK) variability, initial weight-based dosing along with routine therapeutic drug monitoring of tacrolimus are employed to optimize its clinical utilization. Both supratherapeutic and subtherapeutic tacrolimus concentrations can result in poor outcomes, thus tacrolimus PK variability is particularly important to consider in the pediatric population given the differences in absorption, distribution, metabolism, and excretion among children of various sizes and at different stages of development. The primary goals of the current study were to develop a population PK (PopPK) model for tacrolimus IV continuous infusion in the pediatric and young adult hematopoietic cell transplant (HCT) population and implement the PopPK model in a clinically available Bayesian forecasting tool.Methods: A retrospective chart review was conducted of 111 pediatric and young adult patients who received IV tacrolimus by continuous infusion early in the post-transplant period during HCT from February 2016 to July 2020 at our institution. PopPK model building was performed in NONMEM. The PopPK model building process included identifying structural and random effects models that best fit the data and then identifying which patient-specific covariates (if any) further improved model fit.Results: A total of 1,648 tacrolimus plasma steady-state trough concentrations were included in the PopPK modeling process. A 2-compartment structural model best fit the data. Allometrically-scaled weight was a covariate that improved estimation of both clearance and volume of distribution. Overall, model predictions only showed moderate bias, with minor under-prediction at lower concentrations and minor over-prediction at higher predicted concentrations. The model was implemented in a Bayesian dosing tool and made available at the point-of-care.Discussion: Novel therapeutic drug monitoring strategies for tacrolimus within the pediatric and young adult HCT population are necessary to reduce toxicity and improve efficacy in clinical practice. The model developed presents clinical utility in optimizing the use of tacrolimus by enabling model-guided, individualized dosing of IV, continuous tacrolimus via a Bayesian forecasting platform.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.