OBJECTIVE-In obesity and diabetes, myocardial fatty acid utilization and myocardial oxygen consumption (MVO 2 ) are increased, and cardiac efficiency is reduced. Mitochondrial uncoupling has been proposed to contribute to these metabolic abnormalities but has not been directly demonstrated. RESEARCH DESIGN AND METHODS-Oxygen consumptionand cardiac function were determined in db/db hearts perfused with glucose or glucose and palmitate. Mitochondrial function was determined in saponin-permeabilized fibers and proton leak kinetics and H 2 O 2 generation determined in isolated mitochondria.RESULTS-db/db hearts exhibited reduced cardiac function and increased MVO 2 . Mitochondrial reactive oxygen species (ROS) generation and lipid and protein peroxidation products were increased. Mitochondrial proliferation was increased in db/db hearts, oxidative phosphorylation capacity was impaired, but H 2 O 2 production was increased. Mitochondria from db/db mice exhibited fatty acid-induced mitochondrial uncoupling that is inhibitable by GDP, suggesting that these changes are mediated by uncoupling proteins (UCPs). Mitochondrial uncoupling was not associated with an increase in UCP content, but fatty acid oxidation genes and expression of electron transfer flavoproteins were increased, whereas the content of the F1 ␣-subunit of ATP synthase was reduced.CONCLUSIONS-These data demonstrate that mitochondrial uncoupling in the heart in obesity and diabetes is mediated by activation of UCPs independently of changes in expression levels. This likely occurs on the basis of increased delivery of reducing equivalents from -oxidation to the electron transport chain, which coupled with decreased oxidative phosphorylation capacity increases ROS production and lipid peroxidation.
Background-Diabetes-associated cardiac dysfunction is associated with mitochondrial dysfunction and oxidative stress, which may contribute to left ventricular dysfunction. The contribution of altered myocardial insulin action, independent of associated changes in systemic metabolism, is incompletely understood. The present study tested the hypothesis that perinatal loss of insulin signaling in the heart impairs mitochondrial function. Methods and Results-In 8-week-old mice with cardiomyocyte deletion of insulin receptors (CIRKO), inotropic reserves were reduced, and mitochondria manifested respiratory defects for pyruvate that was associated with proportionate reductions in catalytic subunits of pyruvate dehydrogenase. Progressive age-dependent defects in oxygen consumption and ATP synthesis with the substrate glutamate and the fatty acid derivative palmitoyl-carnitine were observed. Mitochondria also were uncoupled when exposed to palmitoyl-carnitine, in part as a result of increased reactive oxygen species production and oxidative stress. Although proteomic and genomic approaches revealed a reduction in subsets of genes and proteins related to oxidative phosphorylation, no reductions in maximal activities of mitochondrial electron transport chain complexes were found. However, a disproportionate reduction in tricarboxylic acid cycle and fatty acid oxidation proteins in mitochondria suggests that defects in fatty acid and pyruvate metabolism and tricarboxylic acid flux may explain the mitochondrial dysfunction observed. Conclusions-Impaired myocardial insulin signaling promotes oxidative stress and mitochondrial uncoupling, which, together with reduced tricarboxylic acid and fatty acid oxidative capacity, impairs mitochondrial energetics. This study identifies specific contributions of impaired insulin action to mitochondrial dysfunction in the heart. (Circulation. 2009; 119:1272-1283.)Key Words: insulin Ⅲ metabolism Ⅲ mitochondria Ⅲ oxidative stress R ecent studies have suggested that impaired mitochondrial energetics may contribute to cardiac dysfunction in obesity and diabetes mellitus. [1][2][3][4][5][6][7] The pathogenesis of mitochondrial dysfunction in obesity or diabetes-related heart disease is likely multifactorial but includes fatty acid (FA)-mediated mitochondrial uncoupling and oxidative damage. 3,4,8 -11 A commonly associated finding in the heart in experimental models of obesity and diabetes mellitus is myocardial insulin resistance. [12][13][14][15][16] However, it is not known whether myocardial insulin resistance per se contributes directly to the pathogenesis of myocardial mitochondrial dysfunction. Clinical Perspective p 1283The effects of myocardial insulin signaling on the acute regulation of myocardial metabolism are well known 17,18 and include increasing glucose uptake and glycolysis via regulation of GLUT4 translocation 19,20 and activation of 6-phosphofructo-1-kinase. 21 In perfused hearts, insulin increases glucose oxidation and reduces FA oxidation. 13 In vivo, the antilipolytic ef...
Recently, a syndrome of Mutant I NS-gene-induced Diabetes of Youth (MIDY, derived from one of 26 distinct mutations) has been identified as a cause of insulin-deficient diabetes, resulting from expression of a misfolded mutant proinsulin protein in the endoplasmic reticulum (ER) of insulin-producing pancreatic beta cells. Genetic deletion of one, two, or even three alleles encoding insulin in mice does not necessarily lead to diabetes. Yet MIDY patients are INS-gene heterozygotes; inheritance of even one MIDY allele, causes diabetes. Although a favored explanation for the onset of diabetes is that insurmountable ER stress and ER stress response from the mutant proinsulin causes a net loss of beta cells, in this report we present three surprising and interlinked discoveries. First, in the presence of MIDY mutants, an increased fraction of wild-type proinsulin becomes recruited into nonnative disulfide-linked protein complexes. Second, regardless of whether MIDY mutations result in the loss, or creation, of an extra unpaired cysteine within proinsulin, Cys residues in the mutant protein are nevertheless essential in causing intracellular entrapment of co-expressed wild-type proinsulin, blocking insulin production. Third, while each of the MIDY mutants induces ER stress and ER stress response; ER stress and ER stress response alone appear insufficient to account for blockade of wild-type proinsulin. While there is general agreement that ultimately, as diabetes progresses, a significant loss of beta cell mass occurs, the early events described herein precede cell death and loss of beta cell mass. We conclude that the molecular pathogenesis of MIDY is initiated by perturbation of the disulfide-coupled folding pathway of wild-type proinsulin.
Type 1B diabetes (typically early onset; without islet autoantibodies) has been described in patients bearing small coding sequence mutations in the INS gene. Not all mutations in the INS gene cause the autosomal dominant Mutant INS-gene-induced Diabetes of Youth (MIDY) syndrome, but most missense mutations affecting proinsulin folding produce MIDY. MIDY patients are heterozygotes, with the expressed proinsulin mutants exerting dominant-negative (gain of toxic function) behavior in pancreatic beta cells. Herein, we focus primarily on proinsulin folding in the endoplasmic reticulum, providing insight into perturbations of this folding pathway in MIDY. Accumulated evidence indicates that in the molecular pathogenesis of the disease, misfolded proinsulin exerts dominant effects that initially inhibit insulin production, progressing to beta cell demise with diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.