Uranium recovery from seawater has been investigated for several decades for the purpose of securing nuclear fuel for energy production. In this study, field column experiments have been performed at the Marine Sciences Laboratory of the Pacific Northwest National Laboratory (PNNL) using a laboratory-proven, amidoxime-based polymeric adsorbent developed at the Oak Ridge National Laboratory (ORNL). The adsorbent was packed either in in-line filters or in flow-through columns. The maximum amount of uranium uptake from seawater was 3.3 mg of U/g of adsorbent after 8 weeks of contact between the adsorbent and seawater. This uranium adsorption amount was about 3 times higher than the maximum amount achieved in this study by a leading adsorbent developed at the Japan Atomic Energy Agency (JAEA). Both adsorbents were tested under similar conditions. The results were used to update an assessment of the cost of large-scale recovery of uranium from seawater using the ORNL adsorbent. The updated uranium production cost was estimated to be reduced to $610/kg of U, approximately half the cost estimated for the JAEA technology.
A new family of high-surface-area polyethylene fiber adsorbents named the AF series was recently developed at the Oak Ridge National Laboratory (ORNL). The AF series adsorbents were synthesized by radiation-induced graft polymerization of acrylonitrile and itaconic acid (at different monomer/comonomer mol ratios) onto high surface area polyethylene fibers. The degree of grafting (%DOG) of AF series adsorbents was found to be 154−354%. The grafted nitrile groups were converted to amidoxime groups by treating with hydroxylamine. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with sodium-based synthetic aqueous solution, spiked with 8 ppm uranium. The uranium adsorption capacity in simulated seawater screening ranged from 170 to 200 g-U/kg-ads irrespective of %DOG. A monomer/comonomer molar ratio in the range of 7.57−10.14 seemed to be optimum for highest uranium loading capacity. Subsequently, the adsorbents were also tested with natural seawater at Pacific Northwest National Laboratory (PNNL) using flow-through column experiments to determine uranium loading capacity with varying KOH conditioning times at 80 °C. The highest adsorption capacity of AF1 measured after 56 days of marine testing was demonstrated as 3.9 g-U/kg-adsorbent and 3.2 g-U/kg-adsorbent for 1 and 3 h of KOH conditioning at 80 °C, respectively. Based on capacity values of several AF1 samples, it was observed that changing KOH conditioning from 1 to 3 h at 80 °C resulted in a 22−27% decrease in uranium adsorption capacity in seawater.
The Pacific Northwest National Laboratory (PNNL) is evaluating the performance of adsorption materials to extract uranium from natural seawater. Testing consists of measurements of the adsorption of uranium and other elements from seawater as a function of time using flow-through columns and a recirculating flume to determine adsorbent capacity and adsorption kinetics. The amidoxime-based polymer adsorbent AF1, produced by Oak Ridge National Laboratory (ORNL), had a 56-day adsorption capacity of 3.9 ± 0.2 g U/kg adsorbent material, a saturation capacity of 5.4 ± 0.2 g U/kg adsorbent material, and a half-saturation time of 23 ± 2 days. The ORNL AF1 adsorbent has a very high affinity for uranium, as evidenced by a 56-day distribution coefficient between adsorbent and solution of log KD,56day = 6.08. Calcium and magnesium account for a majority of the cations adsorbed by the ORNL amidoxime-based adsorbents (61% by mass and 74% by molar percent), uranium is the fourth most abundant element adsorbed by mass and seventh most abundant by molar percentage. Marine testing at Woods Hole Oceanographic Institution with the ORNL AF1 adsorbent produced adsorption capacities 15% and 55% higher than those observed at PNNL for column and flume testing, respectively. Variations in competing ions may be the explanation for the regional differences. Hydrodynamic modeling predicts that a farm of adsorbent materials will likely have minimal effect on ocean currents and removal of uranium and other elements from seawater when farm densities are <1800 braids/km2. A decrease in uranium adsorption capacity of up to 30% was observed after 42 days of exposure because of biofouling when the ORNL braided adsorbent AI8 was exposed to raw seawater in a flume in the presence of light. No toxicity was observed with flow-through column effluents of any absorbent materials tested to date. Toxicity could be induced with some non-amidoxime based absorbents only when the ratio of solid absorbent to test media was increased to part per thousand levels. Thermodynamic modeling of the seawater−amidoxime adsorbent was performed using the geochemical modeling program PHREEQC. Modeling of the binding of Ca, Mg, Fe, Ni, Cu, U, and V reveal that when binding sites are limited (1 × 10–8 binding sites/kg seawater), vanadium heavily outcompetes other ions for the amidoxime sites. In contrast, when binding sites are abundant, Mg and Ca dominate the total percentage of metals bound to the sorbent.
A new series of adsorbents (AI10 through AI17) were successfully developed at ORNL by radiation induced graft polymerization (RIGP) of acrylonitrile (AN) and vinylphosphonic acid (VPA) (at different mole to mole ratios) onto high surface area polyethylene fiber, with high degrees of grafting (DOG) varying from 110 to 300%. The grafted nitrile groups were converted to amidoxime groups by reaction with 5 wt % hydroxylamine at 80 °C for 72 h. The amidoximated adsorbents were then conditioned with 0.44 M KOH at 80 °C followed by screening at ORNL with prescreening brine spiked with 8 ppm uranium. Uranium adsorption capacities in prescreening ranged from 171 to 187 g-U/kg-ads irrespective of percent DOG. The performance of the adsorbents with respect to uranium adsorption in natural seawater was also investigated using flow-through-column testing at the Pacific Northwest National Laboratory (PNNL). Three hours of KOH conditioning led to higher uranium uptake than 1 h of conditioning. The adsorbent AI11, containing AN and VPA at the mole ratio of 3.52, emerged as the potential candidate for the highest uranium adsorption (3.35 g-U/kg-ads.) after 56 days of exposure in seawater flow-through-columns. The rate of vanadium adsorption over uranium linearly increased throughout the 56 days of exposure. The total mass of vanadium uptake was ∼5 times greater than uranium after 56 days.
Extraction of uranium (U) from seawater for use as a nuclear fuel is a significant challenge due to the low concentration of U in seawater (∼3.3 ppb) and difficulties to selectively extract U from the background of major and trace elements in seawater. The Pacific Northwest National Laboratory (PNNL)’s Marine Sciences Laboratory (MSL) has been serving as a marine test site for determining performance characteristics (adsorption capacity, adsorption kinetics, and selectivity) of novel amidoxime-based polymeric adsorbents developed at Oak Ridge National Laboratory (ORNL) under natural seawater exposure conditions. This manuscript describes the performance of three formulations (38H, AF1, AI8) of amidoxime-based polymeric adsorbents produced at ORNL in MSL’s ambient seawater testing facility. The adsorbents were produced in two forms, fibrous material (40–100 mg samples) and braided material (5–10 g samples), and exposed to natural seawater using flow-through columns and recirculating flumes. All three formulations demonstrated high 56 day uranium adsorption capacity (>3 g U/kg adsorbent). The AF1 formulation had the best uranium adsorption performance, with a 56 day capacity of 3.9 g U/kg adsorbent, a saturation capacity of 5.4 g U/kg adsorbent, and ∼25 days half-saturation time. The two exposure methods, flow-through columns and flumes, were demonstrated to produce similar performance results, providing confidence that the test methods were reliable, that scaling up from 10’s of mg quantities of exposure in flow-through columns to gram quantities in flumes produced similar results, and confirm that the manufacturing process produces a homogeneous adsorbent. Adsorption kinetics appear to be element specific, with half-saturation times ranging from minutes for the major cations in seawater, to 8–10 weeks for V and Fe. Reducing the exposure time provides a potential pathway to improve the adsorption capacity of U by reducing the V/U ratio on the adsorbent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.