Binding of the SDS to the polymer via two mechanisms - monomeric anti-cooperative and micellar cooperative - leads to surfactant-concentration-specific macroscopic changes in the viscosity. Binding of the surfactant to the polymer drives a conformational rearrangement, and an associated redistribution of the polymer end-groups and linker associations throughout the hydrophobic domains. The composition and size of these domains are sensitive to the polymer architecture. Therefore, there is a complex balance between polymer molecular weight, ethylene oxide block size, and number of urethane linkers, coupled with the size of the hydrophobic end-groups. In particular, the urethane linkers are shown to play a hitherto largely neglected but important role in driving the polymer association.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.