Nanoscale superconductor/semiconductor hybrid devices are assembled from indium arsenide semiconductor nanowires individually contacted by aluminum-based superconductor electrodes. Below 1 kelvin, the high transparency of the contacts gives rise to proximity-induced superconductivity. The nanowires form superconducting weak links operating as mesoscopic Josephson junctions with electrically tunable coupling. The supercurrent can be switched on/off by a gate voltage acting on the electron density in the nanowire. A variation in gate voltage induces universal fluctuations in the normal-state conductance, which are clearly correlated to critical current fluctuations. The alternating-current Josephson effect gives rise to Shapiro steps in the voltage-current characteristic under microwave irradiation.
When two superconductors are electrically connected by a weak link--such as a tunnel barrier--a zero-resistance supercurrent can flow. This supercurrent is carried by Cooper pairs of electrons with a combined charge of twice the elementary charge, e. The 2e charge quantum is clearly visible in the height of voltage steps in Josephson junctions under microwave irradiation, and in the magnetic flux periodicity of h/2e (where h is Planck's constant) in superconducting quantum interference devices. Here we study supercurrents through a quantum dot created in a semiconductor nanowire by local electrostatic gating. Owing to strong Coulomb interaction, electrons only tunnel one-by-one through the discrete energy levels of the quantum dot. This nevertheless can yield a supercurrent when subsequent tunnel events are coherent. These quantum coherent tunnelling processes can result in either a positive or a negative supercurrent, that is, in a normal or a pi-junction, respectively. We demonstrate that the supercurrent reverses sign by adding a single electron spin to the quantum dot. When excited states of the quantum dot are involved in transport, the supercurrent sign also depends on the character of the orbital wavefunctions.
We report reproducible fabrication of InP-InAsP nanowire light emitting diodes in which electron-hole recombination is restricted to a quantum-dot-sized InAsP section. The nanowire geometry naturally self-aligns the quantum dot with the n-InP and p-InP ends of the wire, making these devices promising candidates for electrically-driven quantum optics experiments. We have investigated the operation of these nano-LEDs with a consistent series of experiments at room temperature and at 10 K, demonstrating the potential of this system for single photon applications.Nanowire light emitting diodes (NW LEDs) offer exciting new possibilities for opto-electronic devices. Growth of direct-bandgap NWs on Si 1, 2 will allow optically active elements to be integrated with already highly mature Si technology. For solid-state lighting applications, broad-area LEDs made from NW arrays have higher light-extraction efficiency than traditional planar LEDs 3 , and in the field of quantum optics, NWs offer the possibility to control electron transport at the single-electron level 4 and light emission at the single-photon level 5 .1Since the first demonstration of GaAs NW LEDs in 1992 6 , different geometries and materials have been used to produce NW LEDs operating over a wide range of wavelengths 3, 7-10 . Single-NW LEDs with doping modulation in the axial direction, which is the most interesting geometry for many applications, have been fabricated using GaN-GaInN multi-junctions 3 and a proof-of-principle device has been shown using InP 7 . In this letter we describe the fabrication and characterization of reproducible axial InP NW LED devices, and show that an active InAsP quantum dot region can be incorporated into these devices. The axial geometry allows for controllable injection of electrons and holes into the precisely defined active region, with the additional advantage of high light-extraction efficiency since the optically active region is not embedded in a high refractive index material. Unlike GaInN, InAsP emission can be tuned to infra-red telecommunications wavelengths where there is strong interest in electrically driven single-photon sources 11 .Nanowire p-n junctions were reproducibly grown in the vapor-liquid-solid (VLS) growth mode 12 by use of low-pressure metal-organic vapour-phase epitaxy (MOVPE). 20 nm colloidal Au particles were dispersed on (111)B InP substrates, after which the samples were transferred to a MOVPE system (Aixtron 200), and placed on a RF-heated gas foil rotated graphite disc on a graphite susceptor. The samples were heated to a growth temperature of 420 °C under phosphine (PH 3 ) containing ambient at molar fraction χ PH3 = 8.3×10 -3 , using hydrogen as carrier gas (6 l/min H 2 at 50 mbar). After a 30 s temperature stabilization step, the NW growth was initiated by introducing trimethyl-indium (TMI) into the reactor cell at a molar fraction of χ TMI = 2.2×10 -5 . During the first 20 minutes, hydrogen sulfide (χ H2S = 1.7×10 -6 ) was used for n-type doping, after which the p-type NW part was g...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.