The popularization of cloud computing has raised concerns over the energy consumption that takes place in data centers. In addition to the energy consumed by servers, the energy consumed by large numbers of network devices emerges as a significant problem. Existing work on energy-efficient data center networking primarily focuses on traffic engineering, which is usually adapted from traditional networks. We propose a new framework to embrace the new opportunities brought by combining some special features of data centers with traffic engineering. Based on this framework, we characterize the problem of achieving energy efficiency with a time-aware model, and we prove its NP-hardness with a solution that has two steps. First, we solve the problem of assigning virtual machines (VM) to servers to reduce the amount of traffic and to generate favorable conditions for traffic engineering. The solution reached for this problem is based on three essential principles that we propose. Second, we reduce the number of active switches and balance traffic flows, depending on the relation between power consumption and routing, to achieve energy conservation. Experimental results confirm that, by using this framework, we can achieve up to 50% energy savings. We also provide a comprehensive discussion on the scalability and practicability of the framework.Index Terms-Data center networks, energy efficiency, virtual machine assignment, traffic engineering.
Energy consumption is a growing issue in data centers, impacting their economic viability and their public image. In this work we empirically characterize the power and energy consumed by different types of servers. In particular, in order to understand the behavior of their energy and power consumption, we perform measurements in different servers. In each of them, we exhaustively measure the power consumed by the CPU, the disk, and the network interface under different configurations, identifying the optimal operational levels. One interesting conclusion of our study is that the curve that defines the minimal CPU power as a function of the load is neither linear nor purely convex as has been previously assumed. Moreover, we find that the efficiency of the various server components can be maximized by tuning the CPU frequency and the number of active cores as a function of the system and network load, while the block size of I/O operations should be always maximized by applications. We also show how to estimate the energy consumed by an application as a function of some simple parameters, like the CPU load, and the disk and network activity. We validate the proposed approach by accurately estimating the energy of a map-reduce computation in a Hadoop platform.
Despite some proposals for energy-efficient topologies, most of the studies for saving energy in data center networks are focused on traffic engineering, i.e., consolidating flows and switching off unnecessary network devices. The major weakness of this approach is network oscillation brought by the frequent change of network topology when traffic fluctuates very fast. In this paper, we propose to incorporate rate adaptation into green data center networks. With rate adaptive network devices, we aim at approaching network-wide energy proportionality by routing optimization. We formalize the problem with an integer program and propose an efficient approximation algorithm -TSRR, solving the problem quickly while guaranteeing a constant performance ratio. Extensive range of simulations confirm that more than 40% of the energy can be saved while introducing very slight stretch on network delay. IEEE 12th International Symposium on Network Computing and Applications978-0-7695-5043-5/13 $26.00
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.