One of the most efficient interior-point methods for some classes of primal block-angular problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. Its efficiency depends on the spectral radius-in [0, 1)-of a certain matrix in the definition of the preconditioner. Spectral radius close to 1 degrade the performance of the approach. The purpose of this work is twofold. First, to show that a separable quadratic regularization term in the objective reduces the spectral radius, significantly improving the overall performance in some classes of instances. Second, to consider a regularization term which decreases with the barrier function, thus with no need for an extra parameter. Computational experience with some primal block-angular problems confirms the efficiency of the regularized approach. In particular, for some difficult problems, the solution time is reduced by a factor of two to ten by the regularization term, outperforming state-of-the-art commercial solvers.Keywords interior-point methods · primal block-angular problems · multicommodity network flows · preconditioned conjugate gradient · regularizations · large-scale computational optimization Mathematics Subject Classification (2000) 90C06 · 90C08 · 90C51
One of the best approaches for some classes of multicommodity flow problems is a specialized interior-point method that solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient. Its efficiency depends on the spectral radius-in [0,1)-of a certain matrix in the definition of the preconditioner. In a recent work the authors improved this algorithm (i.e., reduced the spectral radius) for general block-angular problems by adding a quadratic regularization to the logarithmic barrier. This barrier was shown to be self-concordant, which guarantees the convergence and polynomial complexity of the algorithm. In this work we focus on linear multicommodity problems, a particular case of primal block-angular ones. General results are tailored for multicommodity flows, allowing a local sensitivity analysis on the effect of the regularization. Extensive computational results on some standard and some difficult instances, testing several regularization strategies, are also provided. These results show that the regularized interior-point algorithm is more efficient than the nonregularized one. From this work it can be concluded that, if interior-point methods based on conjugate gradients are used, linear multicommodity flow problems are most efficiently solved as a sequence of quadratic ones.
The purpose of the field of statistical disclosure control is to avoid that no confidential information can be derived from statistical data released by, mainly, national statistical agencies. Controlled tabular adjustment (CTA) is an emerging technique for the protection of statistical tabular data. Given a table to be protected, CTA looks for the closest safe table. In this work we focus on CTA for three-dimensional tables using the L 1 norm for the distance between the original and protected tables. Three L 1 -CTA models are presented, giving rise to six different primal block-angular structures of the constraint matrices. The resulting linear programming problems are solved by a specialized interior-point algorithm for this constraints structure, which solves the normal equations by a combination of Cholesky factorization and preconditioned conjugate gradients (PCG). In the past this algorithm shown to be one of the most efficient approaches for some classes of block-angular problems. The effect of quadratic regularizations is also analyzed, showing that for three of the six primal block-angular structures the performance of PCG is guaranteed to improve. Computational results are reported for a set of large instances, which provide linear optimization problems of up to 50 millions of variables and 25 millions of constraints. The specialized interior-point algorithm is compared with the state-of-the-art barrier solver of the CPLEX 12.1 package, showing to be a more efficient choice for very large L 1 -CTA instances.Keywords interior-point methods · primal block-angular problems · preconditioned conjugate gradient · regularizations · large-scale computational optimization · statistical tabular data protection · controlled tabular adjustment Mathematics Subject Classification (2000) 90C90 · 90C06 · 90C08 · 90C51
In a recent work [3] the authors improved one of the most efficient interior-point approaches for some classes of block-angular problems. This was achieved by adding a quadratic regularization to the logarithmic barrier. This regularized barrier was shown to be self-concordant, thus fitting the general structural optimization interior-point framework. In practice, however, most codes implement primal-dual path-following algorithms. This short paper shows that the primal-dual regularized central path is well defined, i.e., it exists, it is unique, and it converges to a strictly complementary primal-dual solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.