[1] The ability to reconstruct the three-dimensional (3D) dynamics of the ocean by an effective version of Surface Quasi-Geostrophy (eSQG) is examined. Using the fact that surface density plays an analogous role as interior potential vorticity (PV), the eSQG method consists in inverting the QG PV generated by sea-surface density only. We also make the extra assumption that sea-surface temperature (SST) anomalies fully represent surface density anomalies. This approach requires a single snapshot of SST and the setup of two parameters: the mean Brunt-Väisälä frequency and a parameter that determines the energy level at the ocean surface. The validity of this approach is tested using an Ocean General Circulation Model simulation representing the North Atlantic in winter. It is shown that the method is quite successful in reconstructing the velocity field at the ocean surface for mesoscales (between 30 and 300 km). The eSQG framework can also be applied to reconstruct subsurface fields using surface information. Results show that the reconstruction of velocities and vorticity from surface fields is reasonably good for the upper 500 m and that the success of the method mainly depends on the quality of the SST as a proxy of the density anomaly at the base of the mixed layer. This situation happens after a mixed-layer deepening period. Therefore the ideal situation for the application of this method would be after strong wind events.Citation: Isern-Fontanet, J., G. Lapeyre, P. Klein, B. Chapron, and M. W. Hecht (2008), Three-dimensional reconstruction of oceanic mesoscale currents from surface information,
The presence of coherent vortices makes observed mesoscale fields of the ocean resemble twodimensional turbulence. Using this analogy, a common definition of a coherent structure has been used to study the statistical properties of Mediterranean Sea vortices observed by satellite altimeters over a 7-yr period. A vortex has been defined as the simply connected region with values of the Okubo-Weiss parameter W Ͻ Ϫ0.2 W , where W is the spatial standard deviation of W, and the same sign of vorticity. This definition is shown to be appropriate to detect and characterize, statistically, properties such as size, mean kinetic energy, and amplitude of vortices in the Mediterranean basin from sea level anomaly maps corresponding to the period from October 1992 to October 1999. The distribution of such properties for the Mediterranean vortices suggests a heuristic criterion to extract and select very coherent and long-lived vortices from the whole set of structures identified in altimetric maps. Such coherent vortices appear to be selected for amplitudes greater than 2 W , where the amplitude has been defined in terms of the Okubo-Weiss parameter rather than vorticity, and strongly correspond to those reported from observations with independent data. Systematic locating and tracking of such vortices provide, for the first time, a general picture of their preferential paths in the Mediterranean basin, which are characterized by complex but rather well defined patterns.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.