SUMMARYAlthough cryopreservation of stallion spermatozoa allows long-term preservation of spermatozoa from particular stallions and facilitates international trade, it is understood to inflict damages on sperm cells that may finally reduce their fertilizing ability. In addition, individual differences are known to exist in the sperm ability to withstand freeze-thawing protocols. To date, these differences have mainly been reported on the basis of sperm motility and membrane integrity. For this reason, the present work sought to determine differences between good (good freezability ejaculates: GFE) and poor (poor freezability ejaculates: PFE) freezability stallion ejaculates in other sperm parameters, including peroxide and superoxide levels, potential of mitochondrial membrane and nuclear integrity. With this purpose, a total of 24 stallion ejaculates were cryopreserved and classified into two groups (GFE vs. PFE), depending on their sperm membrane integrity and motility after freeze-thawing. From the total of 24 ejaculates, 13 were classified as GFE and the other 11 were classified as PFE. Apart from differences in sperm membrane permeability and lipid disorder after freezethawing, GFE presented significantly (p < 0.05) higher percentages of viable spermatozoa with high content of peroxides and of superoxides than PFE. In contrast, and despite cryopreservation of stallion spermatozoa increasing DNA fragmentation and disrupting disulphide bonds in sperm head proteins, no significant differences between GFE and PFE were seen. We can thus conclude that good and poor freezability stallion ejaculates differ in their reactive oxygen species levels after cryopreservation, but not in the damage extent on sperm nucleus.
While the removal of seminal plasma is a routine practice prior to equine sperm cryopreservation, this fluid contains the main source of antioxidant enzymes able to scavenge these reactive oxygen species. Therefore, stallion seminal plasma components may have an impact on ejaculate freezability. Against this background, this study was designed to investigate whether the activities of the main stallion seminal plasma antioxidant enzymes are related to sperm cryotolerance. With this purpose, 16 ejaculates were collected from 14 healthy stallions, and each ejaculate was split into two aliquots. The first one was used to evaluate the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and glutathione reductase (GSR) in seminal plasma. The second aliquot was extended and then processed for cryopreservation. Sperm motility and viability were evaluated before and after cryopreservation, and ejaculates were classified as of good (GFE) or poor freezability (PFE) based on total motile and viable spermatozoa at post-thaw. We observed that, while the specific activities of CAT, GPX, and GSR were similar between GFE and PFE, that of SOD was significantly (p < 0.05) higher in GFE than in PFE. We can thus conclude that, in stallions, the specific activity of SOD in the seminal plasma of a given ejaculate might be related to its freezability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.