These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer‐reviewed by leading experts in the field, making this an essential research companion.
International audienceThe classical model of hematopoiesis established in the mouse postulates that lymphoid cells originate from a founder population of common lymphoid progenitors. Here, using a modeling approach in humanized mice, we showed that human lymphoid development stemmed from distinct populations of CD127(-) and CD127(+) early lymphoid progenitors (ELPs). Combining molecular analyses with in vitro and in vivo functional assays, we demonstrated that CD127(-) and CD127(+) ELPs emerged independently from lympho-mono-dendritic progenitors, responded differently to Notch1 signals, underwent divergent modes of lineage restriction, and displayed both common and specific differentiation potentials. Whereas CD127(-) ELPs comprised precursors of T cells, marginal zone B cells, and natural killer (NK) and innate lymphoid cells (ILCs), CD127(+) ELPs supported production of all NK cell, ILC, and B cell populations but lacked T potential. On the basis of these results, we propose a "two-family" model of human lymphoid development that differs from the prevailing model of hematopoiesis
Objective1) To evaluate whether peripheral blood mononuclear cells (PBMCs) from type 2 diabetic patients present an impairment of phagocytic activity; 2) To determine whether the eventual impairment in phagocytic activity is related to glycemic control and can be reversed by improving blood glucose levels.Methods21 type 2 diabetic patients and 21 healthy volunteers were prospectively recruited for a case-control study. In addition, those patients in whom HbA1c was higher than 8% (n = 12) were hospitalized in order to complete a 5-day intensification treatment of blood glucose. Phagocytic activity was assessed by using a modified flow cytometry procedure developed in our laboratory based on DNA/RNA viable staining to discriminate erythrocytes and debris. This method is simple, highly sensitive and reproducible and it takes advantage of classic methods that are widely used in flow cytometry.ResultsType 2 diabetic patients showed a lower percentage of activated macrophages in comparison with non-diabetic subjects (54.00±18.93 vs 68.53±12.77%; p = 0.006) Significant negative correlations between phagocytic activity and fasting glucose (r = −0.619, p = 0.004) and HbA1c (r = −0.506, p = 0.019) were detected. In addition, multiple linear regression analyses showed that either fasting plasma glucose or HbA1c were independently associated with phagocytic activity. Furthermore, in the subset of patients who underwent metabolic optimization a significant increase in phagocytic activity was observed (p = 0.029).ConclusionsGlycemic control is related to phagocytic activity in type 2 diabetes. Our results suggest that improvement in phagocytic activity can be added to the beneficial effects of metabolic optimization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.