This article reviews the potential clinical uses of antagonists of growth-hormone-releasing hormone (GHRH) for tumor therapy. GHRH antagonists suppress the growth of various human cancer lines xenografted into nude mice; such tumors include breast, ovarian, endometrial and prostate cancers, lung cancers (small-cell lung carcinomas and non-small-cell lung carcinomas), renal, pancreatic, gastric and colorectal carcinomas, brain tumors (malignant gliomas), osteogenic sarcomas and non-Hodgkin's lymphomas. The antitumor effects of GHRH antagonists are exerted in part indirectly through the inhibition of the secretion of GH from the pituitary and the resulting reduction in the levels of hepatic insulin-like growth factor I (IGF-I). The main effects of the GHRH antagonists are, however, exerted directly on tumors. GHRH ligand is present in various human cancers and might function as an autocrine and/or paracrine growth factor. Pituitary-type GHRH receptors and their splice variants are also found in many human cancers. The inhibitory effects of GHRH antagonists seem to be due to the blockade of action of tumoral GHRH. Antagonists of GHRH can also suppress cancer growth by blocking production of IGF-I and/or IGF-II by the tumor. Further development of GHRH antagonists that are still-more potent should lead to potential therapeutic agents for various cancers.
The ectonucleotidases CD39 and CD73 degrade immune stimulatory ATP to adenosine that inhibits T and NK cell responses via the A(2A) adenosine receptor (ADORA2A). This mechanism is used by regulatory T cells (T(reg)) that are associated with increased mortality in OvCA. Immunohistochemical staining of human OvCA tissue specimens revealed further aberrant expression of CD39 in 29/36 OvCA samples, whereas only 1/9 benign ovaries showed weak stromal CD39 expression. CD73 could be detected on 31/34 OvCA samples. While 8/9 benign ovaries also showed CD73 immunoreactivity, expression levels were lower than in tumour specimens. Infiltration by CD4(+) and CD8(+) T cells was enhanced in tumour specimens and significantly correlated with CD39 and CD73 levels on stromal, but not on tumour cells. In vitro, human OvCA cell lines SK-OV-3 and OaW42 as well as 11/15 ascites-derived primary OvCA cell cultures expressed both functional CD39 and CD73 leading to more efficient depletion of extracellular ATP and enhanced generation of adenosine as compared to activated T(reg). Functional assays using siRNAs against CD39 and CD73 or pharmacological inhibitors of CD39, CD73 and ADORA2A revealed that tumour-derived adenosine inhibits the proliferation of allogeneic human CD4(+) T cells in co-culture with OvCA cells as well as cytotoxic T cell priming and NK cell cytotoxicity against SK-OV3 or OAW42 cells. Thus, both the ectonucleotidases CD39 and CD73 and ADORA2A appear as possible targets for novel treatments in OvCA, which may not only affect the function of T(reg) but also relieve intrinsic immunosuppressive properties of tumour and stromal cells.
Background:Screening is an unsolved problem for ovarian cancer (OvCA). As late detection is equivalent to poor prognosis, we analysed whether OvCA patients show diagnostically meaningful microRNA (miRNA) patterns in blood cells.Methods:Blood-borne whole miRNome profiles from 24 patients with OvCA and 15 age- and sex-matched healthy controls were biostatistically evaluated.Results:Student's t-test revealed 147 significantly deregulated miRNAs before and 4 after Benjamini–Hochberg adjustment. Although these included miRNAs already linked to OvCA (e.g., miR-16, miR-155), others had never before been connected to specific diseases. A bioinformatically calculated miRNA profile allowed for discrimination between blood samples of OvCA patients and healthy controls with an accuracy of >76%. When only cancers of the serous subtype were considered and compared with an extended control group (n=39), accuracy, specificity and sensitivity all increased to >85%.Conclusion:Our proof-of-principle study strengthens the hypothesis that neoplastic diseases generate characteristic miRNA fingerprints in blood cells. Still, the obtained OvCA-associated miRNA pattern is not yet sensitive and specific enough to permit the monitoring of disease progression or even preventive screening. Microarray-based miRNA profiling from peripheral blood could thus be combined with other markers to improve the notoriously difficult but important screening for OvCA.
This article reviews the clinical uses of agonists and antagonists of luteinizing-hormone-releasing hormone (LHRH), also known as gonadotropin-releasing hormone. In particular, the state of the art treatment of breast, ovarian and prostate cancer, reproductive disorders, uterine leiomyoma, endometriosis and benign prostatic hypertrophy is reported. Clinical applications of LHRH agonists are based on gradual downregulation of pituitary receptors for LHRH, which leads to inhibition of the secretion of gonadotropins and sex steroids. LHRH antagonists immediately block pituitary LHRH receptors and, therefore, achieve rapid therapeutic effects. LHRH agonists and antagonists can be used to treat uterine leiomyoma and endometriosis; furthermore, both types of LHRH analogs are used to block the secretion of endogenous gonadotropins in ovarian-stimulation programs for assisted reproduction. The preferred primary treatment of patients with advanced, androgen-dependent prostate cancer is based on the periodic administration of depot preparations of LHRH agonists; these agonists can be likewise used to treat estrogen-sensitive breast cancer in premenopausal women. LHRH antagonists have been successfully used to treat prostate cancer and benign prostatic hypertrophy. Since receptors for LHRH are present on a variety of human tumors, (notably breast, prostate, ovarian, endometrial and renal cancers), cytotoxic therapy that targets these tumors with hybrid molecules of LHRH might be possible in the near future. Analogs of LHRH are now a well-established means of treating sex-steroid-dependent, benign and malignant disorders.
AEZS-108 is a cytotoxic analog designed for receptor-mediated targeted chemotherapy and consists of an LHRH carrier linked to doxorubicin. Preclinical studies demonstrate that the uptake of AEZS-108 is achieved by receptor-mediated endocytosis. Results of Phase I and II clinical trials in patients with gynecological cancers demonstrated anticancer activity without cardiotoxicity even in highly pretreated patients. Phase I/II studies in castration-resistant prostate cancer and chemotherapy refractory bladder cancer are in progress. Targeted chemotherapy with a cytotoxic analog of LHRH, such as AEZS-108, is therefore being considered for Phase III studies in advanced endometrial cancers positive for LHRH receptor. LHRH receptors are also present in human colon cancers, melanomas, lymphomas, and sarcomas, and treatment of these cancers with AEZS-108 should also be undertaken. Before such treatment with AEZS-108 is begun, the status of tumoral LHRH receptors of patients must be determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.