A social network consists of people who interact in some way such as members of online communities sharing information via the WWW. To learn more about how to facilitate community building e.g. in organizations, it is important to analyze the interaction behavior of their members over time. So far, many tools have been provided that allow for the analysis of static networks and some for the temporal analysis of networks -however only on the vertex and edge level. In this paper we propose two approaches to analyze the evolution of two different types of online communities on the level of subgroups: The first method consists of statistical analyses and visualizations that allow for an interactive analysis of subgroup evolutions in communities that exhibit a rather membership structure. The second method is designed for the detection of communities in an environment with highly fluctuating members. For both methods, we discuss results of experiments with real data from an online student community.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.