Autosomal-dominant arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) causes sudden cardiac death and is characterized by clinical and genetic heterogeneity. Fifteen unrelated ARVC families with a disease-associated haplotype on chromosome 3p (ARVD5) were ascertained from a genetically isolated population. Identification of key recombination events reduced the disease region to a 2.36 Mb interval containing 20 annotated genes. Bidirectional resequencing showed one rare variant in transmembrane protein 43 (TMEM43 1073C-->T, S358L), was carried on all recombinant ARVD5 ancestral haplotypes from affected subjects and not found in population controls. The mutation occurs in a highly conserved transmembrane domain of TMEM43 and is predicted to be deleterious. Clinical outcomes in 257 affected and 151 unaffected subjects were compared, and penetrance was determined. We concluded that ARVC at locus ARVD5 is a lethal, fully penetrant, sex-influenced morbid disorder. Median life expectancy was 41 years in affected males compared to 71 years in affected females (relative risk 6.8, 95% CI 1.3-10.9). Heart failure was a late manifestation in survivors. Although little is known about the function of the TMEM43 gene, it contains a response element for PPAR gamma (an adipogenic transcription factor), which may explain the fibrofatty replacement of the myocardium, a characteristic pathological finding in ARVC.
Background-Left ventricular noncompaction constitutes a primary cardiomyopathy characterized by a severely thickened, 2-layered myocardium, numerous prominent trabeculations, and deep intertrabecular recesses. The genetic basis of this cardiomyopathy is still largely unresolved. We speculated that mutations in sarcomere protein genes known to cause hypertrophic cardiomyopathy and dilated cardiomyopathy may be associated with left ventricular noncompaction. Methods and Results-Mutational analysis in a cohort of 63 unrelated adult probands with left ventricular noncompaction and no other congenital heart anomalies was performed by denaturing high-performance liquid chromatography analysis and direct DNA sequencing of 6 genes encoding sarcomere proteins. Heterozygous mutations were identified in 11 of 63 samples in genes encoding -myosin heavy chain (MYH7), ␣-cardiac actin (ACTC), and cardiac troponin T (TNNT2). Nine distinct mutations, 7 of them in MYH7, 1 in ACTC, and 1 in TNNT2, were found. Clinical evaluations demonstrated familial disease in 6 of 11 probands with sarcomere gene mutations. MYH7 mutations segregated with the disease in 4 autosomal dominant LVNC kindreds. Six of the MYH7 mutations were novel, and 1 encodes a splice-site mutation, a relatively unique finding for MYH7 mutations. Modified residues in -myosin heavy chain were located mainly within the ATP binding site. Conclusions-We
Deletion 1p36 syndrome is recognized as the most common terminal deletion syndrome. Here, we describe the loss of a gene within the deletion that is responsible for the cardiomyopathy associated with monosomy 1p36, and we confirm its role in nonsyndromic left ventricular noncompaction cardiomyopathy (LVNC) and dilated cardiomyopathy (DCM). With our own data and publically available data from array comparative genomic hybridization (aCGH), we identified a minimal deletion for the cardiomyopathy associated with 1p36del syndrome that included only the terminal 14 exons of the transcription factor PRDM16 (PR domain containing 16), a gene that had previously been shown to direct brown fat determination and differentiation. Resequencing of PRDM16 in a cohort of 75 nonsyndromic individuals with LVNC detected three mutations, including one truncation mutant, one frameshift null mutation, and a single missense mutant. In addition, in a series of cardiac biopsies from 131 individuals with DCM, we found 5 individuals with 4 previously unreported nonsynonymous variants in the coding region of PRDM16. None of the PRDM16 mutations identified were observed in more than 6,400 controls. PRDM16 has not previously been associated with cardiac disease but is localized in the nuclei of cardiomyocytes throughout murine and human development and in the adult heart. Modeling of PRDM16 haploinsufficiency and a human truncation mutant in zebrafish resulted in both contractile dysfunction and partial uncoupling of cardiomyocytes and also revealed evidence of impaired cardiomyocyte proliferative capacity. In conclusion, mutation of PRDM16 causes the cardiomyopathy in 1p36 deletion syndrome as well as a proportion of nonsyndromic LVNC and DCM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.