The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
We develop a parameterized complexity theory for counting problems. As the basis of this theory, we introduce a hierarchy of parameterized counting complexity classes #W[t], for t ≥ 1, that corresponds to Downey and Fellows's W-hierarchy [13] and show that a few central W-completeness results for decision problems translate to #W-completeness results for the corresponding counting problems. Counting complexity gets interesting with problems whose decision version is tractable, but whose counting version is hard. Our main result states that counting cycles and paths of length k in both directed and undirected graphs, parameterized by k, is #W[1]-complete. This makes it highly unlikely that any of these problems is fixed-parameter tractable, even though their decision versions are fixed-parameter tractable. More explicitly, our result shows that most likely there is no f (k) • n c-algorithm for counting cycles or paths of length k in a graph of size n for any computable function f : N → N and constant c, even though there is a 2 O(k) • n 2.376 algorithm for finding a cycle or path of length k [2].
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.