We introduce the CRASS (counterfactual reasoning assessment) data set and benchmark utilizing questionized counterfactual conditionals as a novel and powerful tool to evaluate large language models. We present the data set design and benchmark as well as the accompanying API that supports scoring against a crowd-validated human baseline. We test six state-of-the-art models against our benchmark. Our results show that it poses a valid challenge for these models and opens up considerable room for their improvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.