The standard procedure for the osteogenic differentiation of multipotent stem cells is treatment of a confluent monolayer with a cocktail of dexamethasone (Dex), ascorbic acid (Asc) and β-glycerophosphate (β-Gly). This review describes the effects of these substances on intracellular signaling cascades that lead to osteogenic differentiation of bone marrow stroma-derived stem cells. We conclude that Dex induces Runx2 expression by FHL2/β-catenin-mediated transcriptional activation and that Dex enhances Runx2 activity by upregulation of TAZ and MKP1. Asc leads to the increased secretion of collagen type I (Col1), which in turn leads to increased Col1/α2β1 integrin-mediated intracellular signaling. The phosphate from β-Gly serves as a source for the phosphate in hydroxylapatite and in addition influences intracellular signaling molecules. In this context we give special attention to the differences between dystrophic and bone-specific mineralization.
Background: Titanium and titanium alloys are widely used for fabrication of dental implants. Since the material composition and the surface topography of a biomaterial play a fundamental role in osseointegration, various chemical and physical surface modifications have been developed to improve osseous healing. Zirconia-based implants were introduced into dental implantology as an altenative to titanium implants. Zirconia seems to be a suitable implant material because of its tooth-like colour, its mechanical properties and its biocompatibility. As the osseointegration of zirconia implants has not been extensively investigated, the aim of this study was to compare the osseous healing of zirconia implants with titanium implants which have a roughened surface but otherwise similar implant geometries.
Several grafting materials have been used in sinus augmentation procedures including autogenous bone, demineralized freeze-dried bone (DFDBA), hydroxyapatite, β-tricalcium phosphate (β-TCP), anorganic deproteinized bovine bone and combination of these and others. Up to now a subject of controversy in maxillofacial surgery and dentistry is, what is the most appropriate graft material for sinus floor augmentation.
Purpose:The aim of this study is to provide a body of evidence-based data regarding grafting materials in external sinus floor elevation concerning the fate of the augmented material at the histomorphological level, through a meta-analysis of the available literature.
Materials and methods:The literature searches were performed using the National Library of Medicine. The search covered all English and German literature from 1995 until 2006. For analyzing the amount of bone the parameter "Total Bone Volume" (TBV) was assessed. TBV is determined as the percentage of the section consisting of bone tissue.
Results:In a relatively early phase after implantation the autogenous bone shows the highest TBV values. Interestingly, the different TBV levels approximate during the time. After 9 months no statistically significant differences can be detected between the various grafting materials.
Conclusion:From a clinical point of view, the use of autogenous bone is advantageous if a prosthetic rehabilitation (with functional loading) is expected within 9 months. In other cases the use of anorganic deproteinized bovine bone in combination with autogenous bone seems to be preferable. Donor side morbidity is ignored in this conclusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.