BackgroundBrain homeostasis deteriorates in sepsis, giving rise to a mostly reversible sepsis-associated encephalopathy (SAE). Some survivors experience chronic cognitive dysfunction thought to be caused by permanent brain injury. In this study, we investigated neuroaxonal pathology in sepsis.MethodsWe conducted a longitudinal, prospective translational study involving (1) experimental sepsis in an animal model; (2) postmortem studies of brain from patients with sepsis; and (3) a prospective, longitudinal human sepsis cohort study at university laboratory and intensive care units (ICUs). Thirteen ICU patients with septic shock, five ICU patients who died as a result of sepsis, fourteen fluid-resuscitated Wistar rats with fecal peritonitis, eleven sham-operated rats, and three human and four rat control subjects were included. Immunohistologic and protein biomarker analysis were performed on rat brain tissue at baseline and 24, 48, and 72 h after sepsis induction and in sham-treated rats. Immunohistochemistry was performed on human brain tissue from sepsis nonsurvivors and in control patients without sepsis. The clinical diagnostics of SAE comprised longitudinal clinical data collection and magnetic resonance imaging (MRI) and electroencephalographic assessments. Statistical analyses were performed using SAS software (version 9.4; SAS Institute, Inc., Cary, NC, USA). Because of non-Gaussian distribution, the nonparametric Wilcoxon test general linear models and the Spearman correlation coefficient were used.ResultsIn postmortem rat and human brain samples, neurofilament phosphoform, β-amyloid precursor protein, β-tubulin, and H&E stains distinguished scattered ischemic lesions from diffuse neuroaxonal injury in septic animals, which were absent in controls. These two patterns of neuroaxonal damage were consistently found in septic but not control human postmortem brains. In experimental sepsis, the time from sepsis onset correlated with tissue neurofilament levels (R = 0.53, p = 0.045) but not glial fibrillary acidic protein. Of 13 patients with sepsis who had clinical features of SAE, MRI detected diffuse axonal injury in 9 and ischemia in 3 patients.ConclusionsIschemic and diffuse neuroaxonal injury to the brain in experimental sepsis, human postmortem brains, and in vivo MRI suggest these two distinct lesion types to be relevant. Future studies should be focused on body fluid biomarkers to detect and monitor brain injury in sepsis. The relationship of neurofilament levels with time from sepsis onset may be of prognostic value.Trial registrationClinicalTrials.gov, NCT02442986. Registered on May 13, 2015.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-017-1850-7) contains supplementary material, which is available to authorized users.
Sepsis-associated encephalopathy (SAE) contributes to mortality and neurocognitive impairment of sepsis patients. Neurofilament (Nf) light (NfL) and heavy (NfH) chain levels as biomarkers for neuroaxonal injury were not evaluated in cerebrospinal fluid (CSF) and plasma of patients with sepsis-associated encephalopathy (SAE) before. We conducted a prospective, pilot observational study including 20 patients with septic shock and five patients without sepsis serving as controls. The assessment of SAE comprised a neuropsychiatric examination, electroencephalography (EEG), magnetic resonance imaging (MRI) and delirium screening methods including the confusion assessment method for the ICU (CAM-ICU) and the intensive care delirium screening checklist (ICDSC). CSF Nf measurements in sepsis patients and longitudinal plasma Nf measurements in all participants were performed on days 1, 3 and 7 after study inclusion. Plasma NfL levels increased in sepsis patients over time (p = 0.0063) and remained stable in patients without sepsis. Plasma NfL values were significantly higher in patients with SAE (p = 0.011), significantly correlated with the severity of SAE represented by ICDSC values (R = 0.534, p = 0.022) and correlated with a poorer functional outcome after 100 days (R = -0.535, p = 0.0003). High levels of CSF Nf were measured in SAE patients. CSF NfL levels were higher in non-survivors (p = 0.012) compared with survivors and correlated with days until death (R = -0.932, p<0.0001) and functional outcome after 100 days (R = -0.749, p<0.0001). The present study showed for the first time that Nf levels provide complementary prognostic information in SAE patients indicating a higher chance of death and poorer functional/cognitive outcome in survivors.
IntroductionNeutrophil granulocytes are the first defense line in bacterial infections. However, granulocytes are also responsible for severe local tissue impairment. In order to use donor granulocytes, but at the same time to avoid local side effects, we developed an extracorporeal immune support system. This first-in-man study investigated whether an extracorporeal plasma treatment with a granulocyte bioreactor is tolerable in patients with septic shock. A further intention was to find suitable efficacy end-points for subsequent controlled trials.MethodsThe trial was conducted as a prospective uncontrolled clinical phase I/II study with 28-day follow-up at three university hospital intensive care units. Ten consecutive patients (five men, five women, mean age 60.3 ± 13.9 standard deviation (SD) years) with septic shock with mean ICU entrance scores of Acute Physiology and Chronic Health Evaluation (APACHE) II of 29.9 ± 7.2 and of Simplified Acute Physiology Score (SAPS) II of 66.2 ± 19.5 were treated twice within 72 hours for a mean of 342 ± 64 minutes/treatment with an extracorporeal bioreactor containing 1.41 ± 0.43 × 10E10 granulocytes from healthy donors. On average, 9.8 ± 2.3 liters separated plasma were treated by the therapeutic donor cells. Patients were followed up for 28 days.ResultsTolerance and technical safety during treatment, single organ functions pre/post treatment, and hospital survival were monitored. The extracorporeal treatments were well tolerated. During the treatments, the bacterial endotoxin concentration showed significant reduction. Furthermore, noradrenaline dosage could be significantly reduced while mean arterial pressure was stable. Also, C-reactive protein, procalcitonin, and human leukocyte antigen DR (HLA-DR) showed significant improvement. Four patients died in the hospital on days 6, 9, 18 and 40. Six patients could be discharged.ConclusionsThe extracorporeal treatment with donor granulocytes appeared to be well tolerated and showed promising efficacy results, encouraging further studies.Trial registrationClinicalTrials.gov Identifier: NCT00818597
Thyrotoxic crisis (thyroid storm) is a life-threatening condition. Standard therapy is based on thiamazole, prednisolone, and nonselective beta-blockers. Extracorporeal plasmapheresis is an additional tool for removing circulating thyroxine in patients who do not respond quickly to conventional standard therapy. As thyroxine can be bound by albumin, the aims of the present therapy report were to investigate the potential of extracorporeal single-pass albumin dialysis (SPAD) to remove thyroid hormones and to compare it with plasmapheresis. A 68-year-old female with thyrotoxic crisis refractory to conventional therapy underwent two sessions of plasmapheresis without clinical response. For the treatment dose to be increased, the patient was then treated with a modified continuous veno-venous hemodialysis with a dialysate containing 4% of human serum albumin (SPAD) intended to bind and remove thyroxines continuously. In total, the patient received three sessions of plasmapheresis and four SPAD treatments. Thyroxine levels were detected in the patient and in exchanged plasma or albumin dialysate, respectively, to calculate the amount removed. The main finding was that SPAD treatments were tolerated well by the patient. Due to continuous approach, SPAD sessions removed more thyroid hormone than plasmapheresis did, resulting in the improvement of the clinical status of the patient (reduction of heart rate and catecholamine dosage), which enabled bridging the patient to thyroidectomy as the ultimate surgical treatment. This is the first clinical report of the use of albumin dialysis in thyroid storm. SPAD represents a safe and efficient alternative to plasmapheresis as it can be performed continuously in this critical condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.