This paper explores the potential of robotic needle felting for customized production of nonwoven textiles and their architectural applications. The possibility to program the robotic movement and locally control fiber density and distribution allows the design of nonwoven, heterogeneous materials with graded properties not by differentiating their chemical composition, but rather controlling their mechanical structure. We propose a parametric design and fabrication workflow relying on a 6-axis robotic arm. We describe design techniques for the generation of felted surfaces with varying material properties and their translation to instructions for robotic felting, as well as the physical fabrication setup. Within our research, the ability to locally differentiate material properties is further explored to create three-dimensional folding behaviors. We study how fiber densities affect their folding ability and geometry, examine qualities of resulting edges, analyze how they affect folding and finally design targeted folded structures by informing the felting pattern. While robotic felting has not yet found significant applications in architecture, the designs and prototypes demonstrate its potential in the architectural context, as it suggests new solutions for recyclable, circular building components or surfaces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.