Multiple reports implicated the function of G protein-coupled receptor (GPR)-30 with nongenomic effects of estrogen, suggesting that GPR30 might be a G-protein coupled estrogen receptor. However, the findings are controversial and the expression pattern of GPR30 on a cell type level as well as its function in vivo remains unclear. Therefore, the objective of this study was to identify cell types that express Gpr30 in vivo by analyzing a mutant mouse model that harbors a lacZ reporter (Gpr30-lacZ) in the Gpr30 locus leading to a partial deletion of the Gpr30 coding sequence. Using this strategy, we identified the following cell types expressing Gpr30: 1) an endothelial cell subpopulation in small arterial vessels of multiple tissues, 2) smooth muscle cells and pericytes in the brain, 3) gastric chief cells in the stomach, 4) neuronal subpopulations in the cortex as well as the polymorph layer of the dentate gyrus, 5) cell populations in the intermediate and anterior lobe of the pituitary gland, and 6) in the medulla of the adrenal gland. In further experiments, we aimed to decipher the function of Gpr30 by analyzing the phenotype of Gpr30-lacZ mice. The body weight as well as fat mass was unchanged in Gpr30-lacZ mice, even if fed with a high-fat diet. Flow cytometric analysis revealed lower frequencies of T cells in both sexes of Gpr30-lacZ mice. Within the T-cell cluster, the amount of CD62L-expressing cells was clearly reduced, suggesting an impaired production of T cells in the thymus of Gpr30-lacZ mice.
Graphical Abstract Highlights d Homozygous UBQLN4 germline mutations lead to a genome instability syndrome d UBQLN4 removes ubiquitylated MRE11 from damaged chromatin to curtail DSB resection d UBQLN4 overexpression represses HRR and promotes the use of NHEJ for DSB repair d UBQLN4 overexpression in tumors promotes PARP1 inhibitor sensitivity SUMMARY Genomic instability can be a hallmark of both human genetic disease and cancer. We identify a deleterious UBQLN4 mutation in families with an autosomal recessive syndrome reminiscent of genome instability disorders. UBQLN4 deficiency leads to increased sensitivity to genotoxic stress and delayed DNA double-strand break (DSB) repair. The proteasomal shuttle factor UBQLN4 is phosphorylated by ATM and interacts with ubiquitylated MRE11 to mediate early steps of homologous recombination-mediated DSB repair (HRR). Loss of UBQLN4 leads to chromatin retention of MRE11, promoting non-physiological HRR activity in vitro and in vivo. Conversely, UBQLN4 overexpression represses HRR and favors non-homologous end joining. Moreover, we find UBQLN4 overexpressed in aggressive tumors. In line with an HRR defect in these tumors, UBQLN4 overexpression is associated with PARP1 inhibitor sensitivity. UBQLN4 therefore curtails HRR activity through removal of MRE11 from damaged chromatin and thus offers a therapeutic window for PARP1 inhibitor treatment in UBQLN4overexpressing tumors.of selected pairs defined in a contrast matrix using the R library multcomp. Error bars represent SD of the mean for 3 replicate wells analyzed in one experiment. Each experiment was carried out twice. *p < 0.05. (N) Quantification of the relative comet tail moment (n = 100) derived from the neutral comet assays at the indicated time points. Error bars represent SD of the mean of the relative comet tail moment analyzed in n = 3 experiments.
The composition of tumor-infiltrating lymphocytes (TIL) reflects biology and immunogenicity of cancer. Here, we characterize T-cell subsets and expression of immune checkpoint molecules in head and neck squamous cell carcinoma (HNSCC). We analyzed TIL subsets in primary tumors (n = 34), blood (peripheral blood mononuclear cells (PBMC); n = 34) and non-cancerous mucosa (n = 7) of 34 treatment-naïve HNSCC patients and PBMC of 15 healthy controls. Flow cytometry analyses revealed a highly variable T-cell infiltration mainly of an effector memory phenotype (CD45RA−/CCR7−). Naïve T cells (CD45RA+/CCR7+) were decreased in the microenvironment compared to PBMC of patients, while regulatory T cells (CD4+/CD25+/CD127low and CD4+/CD39+) were elevated. Furthermore, we performed digital image analyses of entire cross sections of HNSCC to define the ‘Immunoscore’ (CD3+ and CD8+ cell infiltration in tumor core and invasive margin) and quantified MHC class I expression on tumor cells by immunohistochemistry. Immune checkpoint molecules cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4), programmed cell death 1 (PD-1) and programmed cell death 1 ligand 1 (PD-L1) were increased in TILs compared to peripheral T cells in flow-cytometric analysis. Human papillomavirus (HPV) positive tumors showed higher numbers of TILs, but a similar composition of T-cell subsets and checkpoint molecule expression compared to HPV negative tumors. Taken together, the tumor microenvironment of HNSCC is characterized by a strong infiltration of regulatory T cells and high checkpoint molecule expression on T-cell subsets. In view of increasingly used immunotherapies, a detailed knowledge of TILs and checkpoint molecule expression on TILs is of high translational relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.