Histone deacetylases (HDACs) are enzymes that cleave off acetyl groups from acetyl-lysine residues in histones and various nonhistone proteins. Four different classes of HDACs have been identified in humans so far. Although classes I, II, and IV are zinc-dependent amidohydrolases, class III HDACs depend on nicotinamide adenine dinucleotide (NAD(+)) for their catalytic activity. According to their homology to Sir2p, a yeast histone deacetylase, the class III is also termed sirtuins. Seven members have been described in humans so far. As sirtuins are involved in many physiological and pathological processes, their activity has been associated with the pathogenesis of cancer, HIV, metabolic, or neurological diseases. Herein, we present an overview over sirtuins including their biology, targets, inhibitors, and activators and their potential as new therapeutic agents.
NAD+-dependent histone deacetylases (sirtuins) are enzymes that cleave acetyl groups from lysine residues in histones and other proteins. Potent selective sirtuin inhibitors are interesting tools for the investigation of the biological functions of these enzymes and may be future drugs for the treatment of cancer or neurodegenerative diseases. Herein we present the results from a protein-based virtual screen of a commercial database with subsequent biological testing of the most promising compounds. The combination of docking and in vitro experimental testing resulted in the identification of novel sirtuin inhibitors with thiobarbiturate structure. To rationalize the experimental results, free-energy calculations were carried out by molecular mechanics Poisson-Boltzmann/surface area (MM-PBSA) calculations. A significant correlation between calculated binding free energies and measured Sirt2 inhibitory activities was observed. The analyses suggested a molecular basis for the interaction of the identified thiobarbiturate derivatives with human Sirt2. Based on the docking and MM-PBSA calculations we synthesized and tested five further thiobarbiturates. The MM-PBSA method correctly predicted the activity of the novel thiobarbiturates. The identified compounds will be used to further explore the therapeutic potential of sirtuin inhibitors.
Class III histone deacetylases (sirtuins) play pivotal roles in many cellular processes. They are linked to extended lifespan and to the pathogenesis of cancer and neuronal disorders. We present novel sirtuin inhibitors based on a 6,7-dichloro-2-oxindole scaffold with low micromolar activity. In vitro activity was rationalized by docking studies, and hyperacetylation of sirtuin targets could be demonstrated in cell culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.