Epidemiological studies have consistently associated high intakes of lycopene or vitamin E with a reduced prostate cancer risk. Both compounds were tested in the MatLyLu Dunning prostate cancer model to gain insight into the in vivo action of lycopene and vitamin E. Supplementation for 4 weeks with 200 ppm lycopene, 540 ppm vitamin E, or both led to plasma levels comparable with those in humans. Both compounds also accumulated in tumor tissue. Macroscopic evaluation of the tumors by magnetic resonance imaging showed a significant increase in necrotic area in the vitamin E and the lycopene treatment groups. Microarray analysis of tumor tissues revealed that both compounds regulated local gene expression. Vitamin E reduced androgen signaling without affecting androgen metabolism. Lycopene interfered with local testosterone activation by down-regulating 5-alpha-reductase and consequently reduced steroid target genes expression (cystatin-related protein 1 and 2, prostatic spermine binding protein, prostatic steroid binding protein C1, C2 and C3 chain, probasin). In addition, lycopene down-regulated prostatic IGF-I and IL-6 expression. Based on these findings, we suggest that lycopene and vitamin E contribute to the reduction of prostate cancer by interfering with internal autocrine or paracrine loops of sex steroid hormone and growth factor activation/synthesis and signaling in the prostate.
The favorable data on the safety, tolerability, and efficacy of VSOP-C184 justify further clinical phase II and III trials as a contrast medium for MRI.
The experiments indicate, that VSOP-C184 may be a well tolerated and safe contrast medium for MR imaging that can be effectively used for MR angiography including visualization of the coronary arteries.
Synthesis of novel magnetic multicore particles (MCP) in the nano range, involves alkaline precipitation of iron(II) chloride in the presence of atmospheric oxygen. This step yields green rust, which is oxidized to obtain magnetic nanoparticles, which probably consist of a magnetite/maghemite mixed-phase. Final growth and annealing at 90°C in the presence of a large excess of carboxymethyl dextran gives MCP very promising magnetic properties for magnetic particle imaging (MPI), an emerging medical imaging modality, and magnetic resonance imaging (MRI). The magnetic nanoparticles are biocompatible and thus potential candidates for future biomedical applications such as cardiovascular imaging, sentinel lymph node mapping in cancer patients, and stem cell tracking. The new MCP that we introduce here have three times higher magnetic particle spectroscopy performance at lower and middle harmonics and five times higher MPS signal strength at higher harmonics compared with Resovist®. In addition, the new MCP have also an improved in vivo MPI performance compared to Resovist®, and we here report the first in vivo MPI investigation of this new generation of magnetic nanoparticles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.