As part of the German Barcode of Life campaign, over 3500 arachnid specimens have been collected and analyzed: ca. 3300 Araneae and 200 Opiliones, belonging to almost 600 species (median: 4 individuals/species). This covers about 60% of the spider fauna and more than 70% of the harvestmen fauna recorded for Germany. The overwhelming majority of species could be readily identified through DNA barcoding: median distances between closest species lay around 9% in spiders and 13% in harvestmen, while in 95% of the cases, intraspecific distances were below 2.5% and 8% respectively, with intraspecific medians at 0.3% and 0.2%. However, almost 20 spider species, most notably in the family Lycosidae, could not be separated through DNA barcoding (although many of them present discrete morphological differences). Conspicuously high interspecific distances were found in even more cases, hinting at cryptic species in some instances. A new program is presented: DiStats calculates the statistics needed to meet DNA barcode release criteria. Furthermore, new generic COI primers useful for a wide range of taxa (also other than arachnids) are introduced.
We give a first account of our ongoing barcoding activities on Bavarian myriapods in the framework of the Barcoding Fauna Bavarica project and IBOL, the International Barcode of Life. Having analyzed 126 taxa (including 122 species) belonging to all major German chilopod and diplopod lineages, often using four or more specimens each, at the moment our species stock includes 82% of the diplopods and 65% of the chilopods found in Bavaria, southern Germany. The partial COI sequences allow correct identification of more than 95% of the current set of Bavarian species. Moreover, most of the myriapod orders and families appear as distinct clades in neighbour-joining trees, although the phylogenetic relationships between them are not always depicted correctly. We give examples of (1) high interspecific sequence variability among closely related species; (2) low interspecific variability in some chordeumatidan genera, indicating that recent speciations cannot be resolved with certainty using COI DNA barcodes; (3) high intraspecific variation in some genera, suggesting the existence of cryptic lineages; and (4) the possible polyphyly of some taxa, i.e. the chordeumatidan genus Ochogona. This shows that, in addition to species identification, our data may be useful in various ways in the context of species delimitations, taxonomic revisions and analyses of ongoing speciation processes.
DNA barcoding is particularly useful for identification and species delimitation in taxa with conserved morphology. Pseudoscorpions are arachnids with high prevalence of morphological crypsis. Here, we present the first comprehensive DNA barcode library for Central European Pseudoscorpiones, covering 70% of the German pseudoscorpion fauna (35 out of 50 species). For 21 species, we provide the first publicly available COI barcodes, including the rare Anthrenochernes stellae Lohmander, a species protected by the FFH Habitats Directive. The pattern of intraspecific COI variation and interspecific COI variation (i.e., presence of a barcode gap) generally allows application of the DNA barcoding approach, but revision of current taxonomic designations is indicated in several taxa. Sequences of 36 morphospecies were assigned to 74 BINs (barcode index numbers). This unusually high number of intraspecific BINs can be explained by the presence of overlooked cryptic species and by the accelerated substitution rate in the mitochondrial genome of pseudoscorpions, as known from previous studies. Therefore, BINs may not be an appropriate proxy for species numbers in pseudoscorpions, while partitions built with the ASAP algorithm (Assemble Species by Automatic Partitioning) correspond well with putative species. ASAP delineated 51 taxonomic units from our data, an increase of 42% compared with the present taxonomy. The Neobisium carcionoides complex, currently considered a polymorphic species, represents an outstanding example of cryptic diversity: 154 sequences from our dataset were allocated to 23 BINs and 12 ASAP units.
As part of the German Barcode of Life (GBOL) Myriapoda program, which aims to sequence the COI barcoding fragment for 2000 specimens of Germany’s 200 myriapod species in the near future, 44 sequences of the centipede order Geophilomorpha are analyzed. The analyses are limited to the genera Geophilus Leach, 1814 and Stenotaenia Koch, 1847 and include a total of six species. A special focus is Stenotaenia, of which 19 specimens from southern, western and eastern Germany could be successfully sequenced. The Stenotaenia data shows the presence of three to four vastly different (13.7–16.7% p-distance) lineages of the genus in Germany. At least two of the three lineages show a wide distribution across Germany, only the lineage including topotypes of Stenotaenia
linearis shows a more restricted distribution in southern Germany. In a maximum likelihood phylogenetic analysis the Italian species Stenotaenia ‘sorrentina’ (Attems, 1903) groups with the different German Stenotaenia
linearis clades. The strongly different Stenotaenia
linearis lineages within Germany, independent of geography, are a strong hint for the presence of additional, cryptic Stenotaenia species in Germany.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.