BackgroundTobacco dependence is the leading cause of preventable death and disabilities worldwide and nicotine is the main substance responsible for the addiction to tobacco. A vaccine against nicotine was tested in a 6-month randomized, double blind phase II smoking cessation study in 341 smokers with a subsequent 6-month follow-up period.Methodology/Principal Findings229 subjects were randomized to receive five intramuscular injections of the nicotine vaccine and 112 to receive placebo at monthly intervals. All subjects received individual behavioral smoking cessation counseling. The vaccine was safe, generally well tolerated and highly immunogenic, inducing a 100% antibody responder rate after the first injection. Point prevalence of abstinence at month 2 showed a statistically significant difference between subjects treated with Nicotine-Qβ (47.2%) and placebo (35.1%) (P = 0.036), but continuous abstinence between months 2 and 6 was not significantly different. However, in subgroup analysis of the per-protocol population, the third of subjects with highest antibody levels showed higher continuous abstinence from month 2 until month 6 (56.6%) than placebo treated participants (31.3%) (OR 2.9; P = 0.004) while medium and low antibody levels did not increase abstinence rates. After 12 month, the difference in continuous abstinence rate between subjects on placebo and those with high antibody response was maintained (difference 20.2%, P = 0.012).ConclusionsWhereas Nicotine-Qβ did not significantly increase continuous abstinence rates in the intention-to-treat population, subgroup analyses of the per-protocol population suggest that such a vaccination against nicotine can significantly increase continuous abstinence rates in smokers when sufficiently high antibody levels are achieved. Immunotherapy might open a new avenue to the treatment of nicotine addiction.Trial RegistrationSwiss Medical Registry 2003DR2327; ClinicalTrials.gov NCT00369616
Nicotine is the principal addictive component in tobacco, and following uptake acts in the central nervous system. The smoking-cessation efforts of most smokers fail because a single slip often delivers sufficient nicotine to the brain to reinstate the drug-seeking behaviour. Blocking nicotine from entering the brain by induction of specific antibodies may be an effective means to prevent such relapses. The hapten nicotine was coupled to virus-like particles (VLP) formed by the coat protein of the bacteriophage Qb. In preclinical experiments, this Nicotine-Qb VLP (NicQb) vaccine induced strong antibody responses. After intravenous nicotine challenge, vaccinated mice exhibited strongly reduced nicotine levels in the brain compared with control mice. In a phase I study, 32 healthy non-smokers were immunized with NicQb. The vaccine was safe and welltolerated. All volunteers who received NicQb showed nicotine-specific IgM antibodies at day 7 and nicotine-specific IgG antibodies at day 14. Antibody levels could be boosted by a second injection or the addition of Alum as an adjuvant and the antibodies had a high affinity for nicotine. These data suggest that antibodies induced by NicQb may prevent relapses by sequestering nicotine in the blood of immunized smokers.
Optimal vaccine strategies must be identified for improving T-cell vaccination against infectious and malignant diseases. MelQbG10 is a virus-like nano-particle loaded with A-type CpG-oligonucleotides (CpG-ODN) and coupled to peptide16–35 derived from Melan-A/MART-1. In this phase IIa clinical study, four groups of stage III-IV melanoma patients were vaccinated with MelQbG10, given (i) with IFA (Montanide) s.c.; (ii) with IFA s.c. and topical Imiquimod; (iii) i.d. with topical Imiquimod; or (iv) as intralymph node injection. In total, 16/21 (76%) patients generated ex vivo detectable Melan-A/MART-1-specific T-cell responses. T-cell frequencies were significantly higher when IFA was used as adjuvant, resulting in detectable T-cell responses in all (11/11) patients, with predominant generation of effector-memory-phenotype cells. In turn, Imiquimod induced higher proportions of central-memory-phenotype cells and increased percentages of CD127+ (IL-7R) T cells. Direct injection of MelQbG10 into lymph nodes resulted in lower T-cell frequencies, associated with lower proportions of memory and effector-phenotype T cells. Swelling of vaccine site draining lymph nodes, and increased glucose uptake at PET/CT was observed in 13/15 (87%) of evaluable patients, reflecting vaccine triggered immune reactions in lymph nodes. We conclude that the simultaneous use of both Imiquimod and CpG-ODN induced combined memory and effector CD8+ T-cell responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.