Three types of next generation batteries are currently being envisaged among the international community: metal-air batteries, multivalent cation batteries and all-solid-state batteries. These battery designs require high-performance, safe and cost effective electrolytes that are compatible with optimized electrode materials. Solid electrolytes have not yet been extensively employed in commercial batteries as they suffer from poor ionic conduction at acceptable temperatures and insufficient stability with respect to lithium-metal. Here we show a novel type of glasses, which evolve from an antiperovskite structure and that show the highest ionic conductivity ever reported for the Li-ion (25 mS cm À1 at 25 C). These glassy electrolytes for lithium batteries are inexpensive, light, recyclable, non-flammable and non-toxic.Moreover, they present a wide electrochemical window (higher than 8 V) and thermal stability within the application range of temperatures.
Filamentous ascomycetes fungi have had important roles in natural cycles, and are already used industrially for e.g. supplying of citric, gluconic and itaconic acids as well as many enzymes. Faster human activities result in higher consumption of our resources and producing more wastes. Therefore, these fungi can be explored to use their capabilities to convert back wastes to resources. The present paper reviews the capabilities of these fungi in growing on various residuals, producing lignocellulose-degrading enzymes and production of organic acids, ethanol, pigments, etc. Particular attention has been on Aspergillus, Fusarium, Neurospora and Monascus genera. Since various species are used for production of human food, their biomass can be considered for feed applications and so biomass compositional characteristics as well as aspects related to culture in bioreactor are also provided. The review has been further complemented with future research avenues.
Precursors of the crystalline antiperovskites A3−xHxOCl (A = Li or Na and 0 < x < 1) can be rendered glass/amorphous solid Li+ or Na+ electrolytes by the addition of water to its solvation limit with/without the addition of a small amount of an oxide or hydroxide.
Filamentous fungi, including the ascomycetes Monascus, Fusarium, Penicillium and Neurospora, are being explored as novel sources of natural pigments with biological functionality for food, feed and cosmetic applications. Such edible fungi can be used in biorefineries for the production of ethanol, animal feed and pigments from waste sources. The present review gathers insights on fungal pigment production covering biosynthetic pathways and stimulatory factors (oxidative stress, light, pH, nitrogen and carbon sources, temperature, co-factors, surfactants, oxygen, tricarboxylic acid intermediates and morphology) in addition to pigment extraction, analysis and identification methods. Pigmentation is commonly regarded as the output of secondary protective mechanisms against oxidative stress and light. Although several studies have examined pigmentation in Monascus spp., research gaps exist in the investigation of interactions among factors as well as process development on larger scales under submerged and solid-state fermentation. Currently, research on pigmentation in Neurospora spp. is at its infancy, but the increasing interest for biorefineries shows potential for booming research in this area.
Fungi of the phylum Zygomycetes fulfil all requirements for being utilized as core catalysts in biorefineries, and would be useful in creating new sustainable products. Apart from the extended use of zygomycetes in preparing fermented foods, industrial metabolites such as lactic acid, fumaric acid, and ethanol are produced from a vast array of feedstocks with the aid of zygomycetes. These fungi produce enzymes that facilitate their assimilation of various complex substrates, e.g. starch, cellulose, phytic acid, and proteins, which is relevant from an industrial point of view. The enzymes produced are capable of catalysing various reactions involved in biodiesel production, preparation of corticosteroid drugs, etc. Biomass produced with the aid of zygomycetes consists of proteins with superior amino acid composition, but also lipids and chitosan. The biomass is presently being tested for animal feed purposes, such as fish feed, as well as for lipid extraction and chitosan production. Complete or partial employment of zygomycetes in biorefining procedures is consequently attractive, and is expected to be implemented within a near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.