An understanding of the logic of odor perception requires a functional analysis of odor-evoked patterns of activity in neural assemblies in the brain. We have developed a sensitive imaging system in the Drosophila brain that couples two-photon microscopy with the specific expression of the calcium-sensitive fluorescent protein, G-CaMP. At natural odor concentration, each odor elicits a distinct and sparse spatial pattern of activity in the antennal lobe that is conserved in different flies. Patterns of glomerular activity are similar upon imaging of sensory and projection neurons, suggesting the faithful transmission of sensory input to higher brain centers. Finally, we demonstrate that the response pattern of a given glomerulus is a function of the specificity of a single odorant receptor. The development of this imaging system affords an opportunity to monitor activity in defined neurons throughout the fly brain with high sensitivity and excellent spatial resolution.
Courtship is an innate sexually dimorphic behaviour that can be observed in naive animals without previous learning or experience, suggesting that the neural circuits that mediate this behaviour are developmentally programmed. In Drosophila, courtship involves a complex yet stereotyped array of dimorphic behaviours that are regulated by Fru(M), a male-specific isoform of the fruitless gene. Fru(M) is expressed in about 2,000 neurons in the fly brain, including three subpopulations of olfactory sensory neurons and projection neurons (PNs). One set of Fru(+) olfactory neurons expresses the odorant receptor Or67d and responds to the male-specific pheromone cis-vaccenyl acetate (cVA). These neurons converge on the DA1 glomerulus in the antennal lobe. In males, activation of Or67d(+) neurons by cVA inhibits courtship of other males, whereas in females their activation promotes receptivity to other males. These observations pose the question of how a single pheromone acting through the same set of sensory neurons can elicit different behaviours in male and female flies. Anatomical or functional dimorphisms in this neural circuit might be responsible for the dimorphic behaviour. We therefore developed a neural tracing procedure that employs two-photon laser scanning microscopy to activate the photoactivatable green fluorescent protein. Here we show, using this technique, that the projections from the DA1 glomerulus to the protocerebrum are sexually dimorphic. We observe a male-specific axonal arbor in the lateral horn whose elaboration requires the expression of the transcription factor Fru(M) in DA1 projection neurons and other Fru(+) cells. The observation that cVA activates a sexually dimorphic circuit in the protocerebrum suggests a mechanism by which a single pheromone can elicit different behaviours in males and in females.
1. The procerebral (PC) lobe of the terrestrial mollusk Limax maximus contains a highly interconnected network of local olfactory interneurons that receives ipsilateral axonal projections from superior and inferior noses. This network exhibits an approximately 0.7-Hz intrinsic oscillation in its local field potential (LFP). 2. Intracellular recordings show that the lobe contains at least two classes of neurons with activity phase locked to the oscillation. Neurons in one class produce periodic bursts of spikes, followed by a period of hyperpolarization and subsequently a depolarizing afterpotential. There is a small but significant chance for a second burst to occur during the depolarizing afterpotential; this leads to a double event in the LFP. Bursting neurons constitute approximately 10% of the neurons in the lobe. 3. Neurons in the other class fire infrequently and do not produce periodic bursts of action potentials. However, they receive strong, periodic inhibitory input during every event in the LFP. These nonbursting cells constitute the major fraction of neurons in the lobe. There is a clear correlation between the periodic burst of action potentials in the bursting neurons and the hyperpolarization seen in nonbursting neurons. 4. Optical techniques are used to image the spatially averaged transmembrane potentials in preparations stained with voltage-sensitive dyes. The results of simultaneous optical and electrical measurements show that the major part of the optical signal can be interpreted as a superposition of the intracellular signals arising from the bursting and nonbursting neurons. 5. Successive images of the entire PC lobe show waves of electrical activity that span the width of the lobe and travel its full length along a longitudinal axis. The direction of propagation in the unperturbed lobe is always from the distal to the proximal end. The wavelength varies between preparations but is on the order of the length of the preparation. 6. One-dimensional images along the longitudinal axis of the lobe are used to construct a space-time map of the optical activity, from which we calculate the absolute contribution of bursting and nonbursting neurons to the optical signal. The contribution of the intracellular signals from the two cell types appears to vary systematically across the lobe; bursting cells dominate at middle and proximal locations, and nonbursting cells dominate at distal locations. 7. The direction and form of the waves can be perturbed either by microsurgical manipulation of the preparation or by chemical modulation of its synaptic and neuronal properties.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.