Due to damage of the nervous system, patients experience impediments in their daily life: severe fatigue, tremor or impaired hand dexterity, hemiparesis, or hemiplegia. Surface electromyography (sEMG) signal analysis is used to identify motion; however, standardization of electrode placement and classification of sEMG patterns are major challenges. This paper describes a technique used to acquire sEMG signals for five hand motion patterns from six able-bodied subjects using an array of recording and stimulation electrodes placed on the forearm and its effects over functional electrical stimulation (FES) and volitional sEMG combinations, in order to eventually control a sEMG-driven FES neuroprosthesis for upper limb rehabilitation. A two-part protocol was performed. First, personalized templates to place eight sEMG bipolar channels were designed; with these data, a universal template, called forearm electrode set (FELT), was built. Second, volitional and evoked movements were recorded during FES application. 95% classification accuracy was achieved using two sessions per movement. With the FELT, it was possible to perform FES and sEMG recordings simultaneously. Also, it was possible to extract the volitional and evoked sEMG from the raw signal, which is highly important for closed-loop FES control.
Brain-Computer Interface (BCI) is a technology that uses electroencephalographic (EEG) signals to control external devices, such as Functional Electrical Stimulation (FES). Visual BCI paradigms based on P300 and Steady State Visually Evoked potentials (SSVEP) have shown high potential for clinical purposes. Numerous studies have been published on P300- and SSVEP-based non-invasive BCIs, but many of them present two shortcomings: (1) they are not aimed for motor rehabilitation applications, and (2) they do not report in detail the artificial intelligence (AI) methods used for classification, or their performance metrics. To address this gap, in this paper the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) methodology was applied to prepare a systematic literature review (SLR). Papers older than 10 years, repeated or not related to a motor rehabilitation application, were excluded. Of all the studies, 51.02% referred to theoretical analysis of classification algorithms. Of the remaining, 28.48% were for spelling, 12.73% for diverse applications (control of wheelchair or home appliances), and only 7.77% were focused on motor rehabilitation. After the inclusion and exclusion criteria were applied and quality screening was performed, 34 articles were selected. Of them, 26.47% used the P300 and 55.8% the SSVEP signal. Five applications categories were established: Rehabilitation Systems (17.64%), Virtual Reality environments (23.52%), FES (17.64%), Orthosis (29.41%), and Prosthesis (11.76%). Of all the works, only four performed tests with patients. The most reported machine learning (ML) algorithms used for classification were linear discriminant analysis (LDA) (48.64%) and support vector machine (16.21%), while only one study used a deep learning algorithm: a Convolutional Neural Network (CNN). The reported accuracy ranged from 38.02 to 100%, and the Information Transfer Rate from 1.55 to 49.25 bits per minute. While LDA is still the most used AI algorithm, CNN has shown promising results, but due to their high technical implementation requirements, many researchers do not justify its implementation as worthwile. To achieve quick and accurate online BCIs for motor rehabilitation applications, future works on SSVEP-, P300-based and hybrid BCIs should focus on optimizing the visual stimulation module and the training stage of ML and DL algorithms.
Virtual reality (VR) and augmented reality (AR) are engaging interfaces that can be of benefit for rehabilitation therapy. However, they are still not widely used, and the use of surface electromyography (sEMG) signals is not established for them. Our goal is to explore whether there is a standardized protocol towards therapeutic applications since there are not many methodological reviews that focus on sEMG control/feedback. A systematic literature review using the PRISMA (preferred reporting items for systematic reviews and meta-analyses) methodology is conducted. A Boolean search in databases was performed applying inclusion/exclusion criteria; articles older than 5 years and repeated were excluded. A total of 393 articles were selected for screening, of which 66.15% were excluded, 131 records were eligible, 69.46% use neither VR/AR interfaces nor sEMG control; 40 articles remained. Categories are, application: neurological motor rehabilitation (70%), prosthesis training (30%); processing algorithm: artificial intelligence (40%), direct control (20%); hardware: Myo Armband (22.5%), Delsys (10%), proprietary (17.5%); VR/AR interface: training scene model (25%), videogame (47.5%), first-person (20%). Finally, applications are focused on motor neurorehabilitation after stroke/amputation; however, there is no consensus regarding signal processing or classification criteria. Future work should deal with proposing guidelines to standardize these technologies for their adoption in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.