Peroxisomes are multifunctional organelles with roles in cellular metabolism, cytotoxicity, and signaling. The plastic nature of these organelles allows them to respond to diverse biological processes, such as virus infections, by remodeling their biogenesis, morphology, and composition to enhance specific functions. During virus infections in humans, peroxisomes act as important immune signaling organelles, aiding the host by orchestrating antiviral signaling. However, more recently it was discovered that peroxisomes can also benefit the virus, facilitating virus–host interactions that rewire peroxisomes to support cellular processes for virus replication and spread. Here, we describe recent studies that uncovered this double-edged character of peroxisomes during infection, highlighting mechanisms that viruses have coevolved to take advantage of peroxisome plasticity. We also provide a perspective for future studies by comparing the established roles of peroxisomes in plant infections and discussing the promise of virology studies as a venue to reveal the uncharted biology of peroxisomes.
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral Wnt5a expression in the marsupial sugar glider ( Petaurus breviceps ) promotes the differentiation of its patagium primordium. We further show that this function of Wnt5a reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently used during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been redeployed during patagium outgrowth in both the sugar glider and bat. Together, our findings reveal that deeply conserved genetic toolkits contribute to the evolutionary transition to flight in mammals.
Mitochondrial function is critical for energy homeostasis and should shape how genetic variation in metabolism is transmitted through levels of biological organization to generate stability in organismal performance. Mitochondrial function is encoded by genes in two distinct and separately inherited genomes - the mitochondrial genome and the nuclear genome - and selection is expected to maintain functional mito-nuclear interactions. The documented high levels of polymorphism in genes involved in these mito-nuclear interactions and wide variation for mitochondrial function demands an explanation for how and why variability in such a fundamental trait is maintained. Potamopyrgus antipodarum is a New Zealand freshwater snail with coexisting sexual and asexual individuals and, accordingly, contrasting systems of separate vs. co-inheritance of nuclear and mitochondrial genomes. As such, this snail provides a powerful means to dissect the evolutionary and functional consequences of mito-nuclear variation. The lakes inhabited by P. antipodarum span wide environmental gradients, with substantial across-lake genetic structure and mito-nuclear discordance. This situation allows us to use comparisons across reproductive modes and lakes to partition variation in cellular respiration across genetic and environmental axes. Here, we integrated cellular, physiological, and behavioral approaches to quantify variation in mitochondrial function across a diverse set of wild P. antipodarum lineages. We found extensive across-lake variation in organismal oxygen consumption and behavioral response to heat stress and differences across sexes in mitochondrial membrane potential but few global effects of reproductive mode. Taken together, our data set the stage for applying this important model system for sexual reproduction and polyploidy to dissecting the complex relationships between mito-nuclear variation, performance, plasticity, and fitness in natural populations.
Lateral flight membranes, or patagia, have evolved repeatedly in diverse mammalian lineages. While little is known about patagium development, its recurrent evolution may suggest a shared molecular basis. By combining transcriptomics, developmental experiments, and mouse transgenics, we demonstrate that lateral WNT5A expression in the marsupial sugar glider (Petaurus breviceps) promotes the differentiation of its patagium primordium. We further show that this function of WNT5A reprises ancestral roles in skin morphogenesis predating mammalian flight and has been convergently employed during patagium evolution in eutherian bats. Moreover, we find that many genes involved in limb development have been re-deployed during patagium outgrowth in both the sugar glider and bat. Taken together, our findings reveal that deeply conserved molecular toolkits underpin the evolutionary transition to flight in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.