With the increase of machine learning usage by industries and scientific communities in a variety of tasks such as text mining, image recognition and self-driving cars, automatic setting of hyper-parameter in learning algorithms is a key factor for obtaining good performances regardless of user expertise in the inner workings of the techniques and methodologies. In particular, for a reinforcement learning algorithm, the efficiency of an agent learning a control policy in an uncertain environment is heavily dependent on the hyper-parameters used to balance exploration with exploitation. In this work, an autonomous learning framework that integrates Bayesian optimization with Gaussian process regression to optimize the hyper-parameters of a reinforcement learning algorithm, is proposed. Also, a bandits-based approach to achieve a balance between computational costs and decreasing uncertainty about the \textit{Q}-values, is presented. A gridworld example is used to highlight how hyper-parameter configurations of a learning algorithm (SARSA) are iteratively improved based on two performance functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.