Two isomeric structures of meso-tetramethyltetrakis(3-hydroxyphenyl)calix[4]pyrrole, 4-alphaalpha betabeta and 4-alphabeta alphabeta, have been isolated and characterized by 1H NMR in different solvents (CD3CN, CD3OD, and DMSO-d6) at 298 K. Standard Gibbs energies of solution derived from solubility data in various solvents were used to calculate the transfer Gibbs energy, delta(t)G(o), of these ligands using acetonitrile as the reference solvent. These results are consistent with the 1H NMR studies in different media that show chemical shift changes observed in the resonances of the NH and the OH protons of these ligands. Solvate formation was observed when these isomers were exposed to saturated atmosphere of N,N-dimethylformamide, dimethyl sulfoxide and propylene carbonate. Anion interaction involving 4-alphaalpha betabeta and 4-alphabeta alphabeta was investigated by 1H NMR in CD3CN while the complex composition was assessed through conductance measurements. Significant differences are observed in the affinity of these ligands for anions as well as in the composition of the fluoride complexes. Thus 4-alphaalpha betabeta shows selectivity for H2PO4(-) in acetonitrile while its isomer 4-alphabeta alphabeta is selective for the fluoride anion. Again the complex composition is altered for the fluoride anion when complexed with 4-alphaalpha betabeta in acetonitrile (1:1 complex) relative to 4-alphabeta alphabeta in the same solvent. The latter isomer shows an enhanced hosting ability for this anion. Thus two anions are taken up per unit of ligand. The thermodynamics of complexation of H2PO4(-) and these ligands in acetonitrile is discussed, and the results are compared with those involving calix[4]pyrrole and this anion in this solvent. It is shown that the isomers interact with two H2PO4(-) anions while one calix[4]pyrrole unit interacts with this anion. This paper demonstrates for the first time that the enthalpy parameter may be a suitable reporter of the number of hydrogen bonds formed when calix[4]pyrrole and its derivatives interact with the dihydrogen phosphate anion in acetonitrile. In moving from acetonitrile to N,N-dimethylformamide, 4-alphaalpha betabeta is unable to enter complexation with most anions, except fluoride, with which the formation of a 1:2 (ligand:anion) complex is demonstrated. The rather versatile behavior of these receptors for anions is explained on the basis of 1H NMR evidence and solvation effects. These investigations highlight the importance of the medium effect on the stability of the complex and reflect the inherent nature of the solvent and its highly significant involvement in the complexation process.
A thermodynamic study involving 7-nitro-1,3,5-triaza adamantane, 1, and its interaction with metal cations in nonaqueous media is first reported. Solubility data of 1 in various solvents were used to derive the standard Gibbs energies of solution, DeltaG(s)o in these solvents. The effect of solvation in the different media was assessed from the Gibbs energy of transfer taking acetonitrile as a reference solvent. 1H NMR studies of the interaction of 1 and metal cations were carried out in CD3CN and CD3OD and the data are reported. Conductance measurements revealed that this ligand forms lead(II) or zinc complexes of 1:1 stoichiometry in acetonitrile. It also revealed a stoichiometry of two molecules of 1 per mercury(II) and two cadmium (II) ions per molecule of 1. The addition of silver salt to 1 led to the precipitation of the silver-1 complex which was isolated and characterized by X-ray crystallography. At variance with conductance measurements in solution, in the solid state the X-ray structure shows a 1:1 stoichiometry in the Hg(II) complex. The thermodynamics of complexation of 1 and these cations provide a quantitative assessment of the selective behavior of this ligand for ions of environmental relevance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.