SUMMARY This study presents the first detailed analysis of ambient noise tomography in an area of the continental upper crust in the Cantabrian Mountains (NW Spain), where a confluence of crustal scale faults occurs at depth. Ambient noise data from two different seismic networks have been analysed. In one side, a 10-short-period station network was set recording continuously for 19 months. A second set of data from 13 broad-band stations was used to extend at depth the models. The phase cross-correlation processing technique was used to compute in total more than 34 000 cross-correlations from 123 station pairs. The empirical Green's functions were obtained by applying the time–frequency, phase-weighted stacking methodology and provided the emergence of Rayleigh waves. After measuring group velocities, Rayleigh-wave group velocity tomographic maps were computed at different periods and then they were inverted in order to calculate S-wave velocities as a function of depth, reaching the first 12 km of the crust. The results show that shallow velocity patterns are dominated by geological features that can be observed at the surface, particularly bedding and/or lithology and fracturing associated with faults. In contrast, velocity patterns below 4 km depth seem to be segmented by large structures, which show a velocity reduction along fault zones. The best example is the visualization in the tomography of the frontal thrust of the Cantabrian Mountains at depth, which places higher velocity Palaeozoic rocks over Cenozoic sediments of the foreland Duero basin. One of the major findings in the tomographic images is the reduction of seismic velocities above the area in the crust where one seismicity cluster is nucleated within the otherwise quiet seismic area of the range. The noise tomography reveals itself as a valuable technique to identify shear zones associated with crustal scale fractures and hence, lower strain areas favourable to seismicity.
The upper-crustal anisotropy of the Cantabrian Mountains (North Spain) has been investigated using two independent but complementary methodologies: (a) shear-wave splitting and (b) ambient seismic noise interferometry. For this purpose, we have processed and compared seismic data from two networks with different scales and recording periods. The shear-wave splitting results show delay times between 0.06 and 0.23 s and spatially variable fast-polarization directions. We calculate that the anisotropic layer has a maximum effective thickness of around 7.5 km and an average anisotropy magnitude of between 4% and 8%. Consistently, our ambient noise observations point to an anisotropy magnitude between 4% and 9% in the first 10 km of the crust. Our results show a clear correlation between the fast directions from both methods and the orientations of the local faults, suggesting that the anisotropy is mainly controlled by the structures. Furthermore, in the west of the study area, fast-polarization directions tend to align parallel to the Variscan fabric in the crust, whereas to the east, in which the Alpine imprint is stronger, many fast directions are aligned parallel to east–west-oriented Alpine features.
Abstract. The cross-correlation of ambient noise records registered by seismic networks has proven to be a valuable tool to obtain new insights into the crustal structure at different scales. Based on 2 to 14 s period Rayleigh and Love dispersion data extracted from the seismic ambient noise recorded by 20 three-component broadband stations belonging to two different temporary experiments, we present the first (i) upper-crustal (1–12 km) high-resolution shear wave velocity and (ii) radial anisotropy variation models of the continental crust in NW Iberia. The area of study represents one of the best-exposed cross sections along the Variscan orogen of western Europe, showing the transition between the external eastern zones towards the internal areas in the west. Both the 2-D maps and an E–W transect reveal a close correspondence with the main geological domains of the Variscan orogen. The foreland fold-and-thrust belt of the orogen, the Cantabrian Zone, is revealed by a zone of relatively low shear wave velocities (2.3–3.0 km s−1), while the internal zones generally display higher homogeneous velocities (> 3.1 km s−1). The boundary between the two zones is clearly delineated in the models, depicting the arcuate shape of the orogenic belt. The velocity patterns also reveal variations of the elastic properties of the upper crust that can be linked to major Variscan structures, such as the basal detachment of the Cantabrian Zone, the stack of nappes involving pre-Variscan basement, or sedimentary features such as the presence of thick syn-orogenic siliciclastic wedges. Overall, the radial anisotropy magnitude varies between −5 % and 15 % and increases with depth. The depth pattern suggests that the alignment of cracks is the main source of anisotropy at < 8 km depths, although the intrinsic anisotropy seems to be significant in the West Asturian–Leonese Zone, the low-grade slate belt adjacent to the Cantabrian Zone. At depths > 8 km, widespread high and positive radial anisotropies are observed, which we attribute to the presence of subhorizontal alignments of grains and minerals in relation to the pre- or syn-orogenic deformation associated with the Variscan orogenesis.
Crustal roots are identified in collision chains worldwide. Frequently mirroring the summits of mountain systems, they elegantly encapsulate the concept of isostasy. The rugged topography of northern Iberia results from convergence with the European plate during the Alpine orogeny that formed the Pyrenean-Cantabrian mountain range. From east to west, the range comprises three distinct parts: the Pyrenees, the Basque Cantabrian region, and the Cantabrian Mountains. The identification of the Pyrenean root in the 1980s and the observation of a similar geometry beneath the Cantabrian range in the 1990s gave place to the current view of crustal thickening as a continuous feature, resulting from the northward subduction of Iberian crust. Recent developments in rift architecture have delivered a complex rifting template for the area prior to convergence, and contrasting views based on two-dimensional restorations have led to a debate over its evolution. A crucial geophysical constraint is Moho topography. Using two different data sets and techniques, we present the most accurate Moho surface to date, evidencing abrupt changes throughout the orogen. The complexity of hyperextended margins underlies the current Moho topography, and this is ultimately transferred to the nonuniform orogenic pattern found in northern Iberia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.