ResumenEl espacio de los polígonos de n lados, inmersos en el espacio euclídeo de tres dimensiones, consiste de una variedad suave en la cual los puntos corresponden a nudos lineales a trozos o "geométricos", mientras que los arcos corresponden a isotopías que preservan la estructura geométrica de esos nudos. Se describe la topología de estos espacios para los casos n = 6 y n = 7. En ambos casos, cada espacio consta de cinco componentes, aunque contiene sólo tres (cuando n = 6) o cuatro (cuando n = 7) tipos topológicos de nudos. Por lo tanto la "equivalencia geométrica de nudos" es estrictamente más fuerte que la equivalencia topológica. Este hecho se demuestra con el nudo trébol hexagonal y el nudo doble heptagonal, los cuales, a diferencia de sus contrapartes topológicas, no son reversibles. Se discutirán también las extensiones de estos resultados a los casos n ≥ 8.Palabras clave: nudos poligonales, polígonos espaciales, espacios de nudos, invariantes de nudos. AbstractThe space of n-sided polygons embedded in euclidean three-space consists of a smooth manifold in which points correspond to piecewise linear or "geometric" knots, while paths correspond to isotopies which preserve the geometric structure of these knots. The topology of these spaces for the case n = 6 and n = 7 is described. In both of these cases, each knot space consists of five components, but contains only three (when n = 6) or four (when n = 7) topological knot types. Therefore "geometric knot equivalence" is strictly stronger than topological equivalence. This point is demonstrated by the hexagonal trefoils and heptagonal figure-eight knots, which, unlike their topological counterparts, are not reversible. Extending these results to the cases n ≥ 8 will also be discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.