Carbon nanotubes are used in several engineering applications because of their superior mechanical properties. Scientific works still need to be carried out, especially on their dynamic response. These studies mainly focus on modal analysis, considering zigzag and armchair nanotubes, and sometimes, varying chirality. However, these works do not present any results on the steady-state responses. Therefore, the objective of this paper is to perform different studies, in terms of the stiffness response, modal analysis and steady-state response of single-walled carbon nanotubes by using a 3D finite-element model of the single-walled carbon nanotube, under different types of boundary conditions, to provide more results in this field. The single-walled carbon nanotube is modeled as a space frame structure by using the Morse potential and as a thin shell model based on various shell theories. A static analysis is performed to compare the stress–strain behavior between the Morse potential and the thin shell model. A parametric study on chirality effects and aspect ratio is also conducted to determine which shell theory is more suitable to model the mechanical behavior of single-walled carbon nanotubes. Finally, the analysis of harmonic response is conducted to describe the steady-state response between both the models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.