Gamification methods adapt the mechanics of games to educational environments for the improvement of the teaching-learning process. Serious games play an important role as tools for gamification, in particular in the context of software engineering courses because of the idiosyncratic nature of the topic. However, the studies on the improvement of student performance resulting from the use of gamification and serious games in courses with different contexts are not conclusive. More empirical research is thus needed to obtain reliable results on the effectiveness, benefits and drawbacks. The overall objective of this work is to study the benefits generated by serious games in the teaching-learning process of Computer Engineering degrees, analyzing the impact on the motivation and student satisfaction, as well as on the learning outcomes and results finally achieved. To this end, an intervention is proposed in the subject of Computer Architecture based on two components covering theoretical and practical sessions. In the theoretical sessions, a serious game experience using Kahoot has been introduced, complementing the master classes and class exercises. For the practical sessions, the development of projects with groups of students has been proposed, whose results in terms of computer performance can be compared through a competition (hackathon). Evaluation of the serious game-based intervention has been approached in terms of student satisfaction and motivation, as well as improved academic performance. In order to assess student satisfaction, surveys have been used to assess the effect on student motivation and satisfaction. For the evaluation of academic performance, a comparative analysis between an experimental and a control group has been carried out, noting a slight increase in the experimental group students' marks.
Abstract-Automated human behaviour analysis has been, and still remains, a challenging problem. It has been dealt from different points of views: from primitive actions to human interaction recognition. This paper is focused on trajectory analysis which allows a simple high level understanding of complex human behaviour. It is proposed a novel representation method of trajectory data, called Activity Description Vector (ADV) based on the number of occurrences of a person is in a specific point of the scenario and the local movements that perform in it. The ADV is calculated for each cell of the scenario in which it is spatially sampled obtaining a cue for different clustering methods. The ADV representation has been tested as the input of several classic classifiers and compared to other approaches using CAVIAR dataset sequences obtaining great accuracy in the recognition of the behaviour of people in a Shopping Centre.
The use of RGB-D sensors for mapping and recognition tasks in robotics or, in general, for virtual reconstruction has increased in recent years. The key aspect of these kinds of sensors is that they provide both depth and color information using the same device. In this paper, we present a comparative analysis of the most important methods used in the literature for the registration of subsequent RGB-D video frames in static scenarios. The analysis begins by explaining the characteristics of the registration problem, dividing it into two representative applications: scene modeling and object reconstruction. Then, a detailed experimentation is carried out to determine the behavior of the different methods depending on the application. For both applications, we used standard datasets and a new one built for object reconstruction.
RGB-D (Red Green Blue and Depth) sensors are devices that can provide color and depth information from a scene at the same time. Recently, they have been widely used in many solutions due to their commercial growth from the entertainment market to many diverse areas (e.g., robotics, CAD, etc.). In the research community, these devices have had good uptake due to their acceptable level of accuracy for many applications and their low cost, but in some cases, they work at the limit of their sensitivity, near to the minimum feature size that can be perceived. For this reason, calibration processes are critical in order to increase their accuracy and enable them to meet the requirements of such kinds of applications. To the best of our knowledge, there is not a comparative study of calibration algorithms evaluating its results in multiple RGB-D sensors. Specifically, in this paper, a comparison of the three most used calibration methods have been applied to three different RGB-D sensors based on structured light and time-of-flight. The comparison of methods has been carried out by a set of experiments to evaluate the accuracy of depth measurements. Additionally, an object reconstruction application has been used as example of an application for which the sensor works at the limit of its sensitivity. The obtained results of reconstruction have been evaluated through visual inspection and quantitative measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.