SummaryLysine acetylation is a well-established posttranslational modification widely conserved and distributed in bacteria. Although multiple regulatory roles have been proved, little is known about its regulation. Here, we present evidence that the transcription of the Gcn5-like acetyltransferase YfiQ of Escherichia coli (proposed name: PatZ) is regulated by cAMP-CRP and its implications on acetate metabolism regulation. The acetate scavenging acetyl-CoA synthetase (Acs) is regulated at the transcriptional and post-translational levels. Post-translational regulation depends on a protein acetyltransferase (yfiQ) and an NAD + -dependent deacetylase (cobB). We have studied their expression under different environmental conditions. cobB is constitutively expressed from a promoter located upstream nagK. The expression of yfiQ occurs from its own promoter; it is upregulated in the stationary phase and in the presence of non-PTS carbon sources and is positively regulated by cAMP-CRP. Two putative CRP binding sites are necessary for its full activity. Gene deletion revealed that cobB is essential for growth on acetate, yfiQ deletion restoring growth of the cobB mutant. The fine tuning of metabolic enzymes results from the integration of multiple mechanisms, and redundant systems may exist. Despite the existence of divergent catabolite repression systems, this may be a conserved strategy common to both Gram-positive and -negative bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.