The sustainability of glucose production from two different feedstocks, maize starch (MS) and woody biomass residues (WBR), was evaluated by means of life cycle assessment (LCA) methodology. The aim of this work was to compare the environmental performance of conventional technology (glucose from MS by enzymatic hydrolysis) with a novel alternative (glucose from WBR by a three-step process: pretreatment -crushing, deacetylation, and diluted-acid treatment-; conditioning -acid-alkali-acid treatment-; and enzymatic hydrolysis), which is specifically oriented towards the circular economy context. Life cycle inventory was completed by simulation of the different processes, followed by integration of the mass and energy inputs and outputs in an LCA software (GaBi 7.3). LCA results evidenced benefits in all the evaluated environmental impacts when using WBR as a glucose source alternative. Environmental damages associated with the starch production process, which involves more than 60% of the impacts calculated for glucose production from maize starch, has been detected as the key step in which focusing the improvement efforts for this process. On the other hand, pretreating of the biomass residues was the most contributing stage in the WBR process, principally due to the large heat and electricity requirements associated with this stage. Finally, we concluded that the WBR process proposed here might be considered as a valuable alternative in sustainability terms for the production of glucose within the biorefinery concept. Likewise, we have identified the critical points that should be considered to further improve this technology.
Life cycle analysis and exergy analysis are applied to compare the production of maleic anhydride from different feedstock, both biomass‐ and petrochemical‐derived raw materials, in order to evaluate the sustainability of alternative biorefinery processes to conventional routes. The considered processes involve two options: gas and aqueous phase furfural oxidation with oxygen (air) and hydrogen peroxide as oxidants, respectively, considered as sustainable technologies because of the use of renewable feedstock. Conventional routes, used as benchmarks, include the current production processes using benzene or butane as raw materials. The results show that the aqueous phase process is far from being viable from an energy and environmental point of view due to the high exergy destruction and the use of H2O2 as oxidant (whose production entails important environmental drawbacks). On the contrary, the gas phase oxidation of furfural shows competitive results with petrochemical technologies. Nevertheless, the major environmental drawback of the new furfural‐to‐maleic anhydride production processes is detected on the environmental profile of the starting raw material. The results suggest that a better environmental footprint for maleic anhydride production in gas phase can be obtained if environmentally friendly furfural production technologies are used at the commercial scale.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.