Methane is an abundant low-carbon fuel that provides a valuable energy resource, but it is also a potent greenhouse gas. Therefore, anaerobic oxidation of methane (AOM) is an essential process with central features in controlling the carbon cycle. Candidatus ‘Methanoperedens nitroreducens’ (M. nitroreducens) is a recently discovered methanotrophic archaeon capable of performing AOM via a reverse methanogenesis pathway utilizing nitrate as the terminal electron acceptor. Recently, reverse methanogenic pathways and energy metabolism among anaerobic methane-oxidizing archaea (ANME) have gained significant interest. However, the energetics and the mechanism for electron transport in nitrate-dependent AOM performed by M. nitroreducens is unclear. This paper presents a genome-scale metabolic model of M. nitroreducens, iMN22HE, which contains 813 reactions and 684 metabolites. The model describes its cellular metabolism and can quantitatively predict its growth phenotypes. The essentiality of the cytoplasmic heterodisulfide reductase HdrABC in the reverse methanogenesis pathway is examined by modeling the electron transfer direction and the specific energy-coupling mechanism. Furthermore, based on better understanding electron transport by modeling, a new energy transfer mechanism is suggested. The new mechanism involves reactions capable of driving the endergonic reactions in nitrate-dependent AOM, including the step reactions in reverse canonical methanogenesis and the novel electron-confurcating reaction HdrABC. The genome metabolic model not only provides an in silico tool for understanding the fundamental metabolism of ANME but also helps to better understand the reverse methanogenesis energetics and its thermodynamic feasibility.
GEnome-scale Metabolic (GEM) models are knowledge bases of the reactions and metabolites of a particular organism. These GEM models allow for the simulation of the metabolism - e.g. calculating growth and production yields - based on the stoichiometry, reaction directionality and uptake rates of the metabolic network. Over the years, several extensions have been added to take into account other actors in metabolism, going beyond pure stoichiometry. One such extension is enzyme-constraint models, which enable the integration of kinetic data and proteomics data into GEM models. Given its relatively recent formulation, there are still challenges in standardization and data reconciliation between the model and the experimental measurements. In this work, we present geckopy 3.0 (Genome-scale model Enzyme Constraints, using Kinetics and Omics in python), an actualization from scratch of the previous python implementation of the same name. This update tackles the aforementioned challenges, in an effort to reach maturity in enzyme-constraint modeling. With the new geckopy, proteins are typed in the SBML document, taking advantage of the SBML Groups extension, in compliance with community standards. Additionally, a suite of relaxation algorithms - in the form of linear and mixed-integer linear programming problems - has been added to facilitate reconciliation of raw proteomics data with the metabolic model. Several functionalities to integrate experimental data were implemented, including an interface layer with pytfa for the usage of thermodynamics and metabolomics constraints. Finally, the relaxation algorithms were benchmarked against public proteomics datasets in Escherichia coli for different conditions, revealing targets for improving the enzyme constrained model and/or the proteomics pipeline.
Genome-scale metabolic models (GEMs) have emerged as a tool to understand human metabolism from a holistic perspective with high relevance in the study of many diseases and in the metabolic engineering of human cell lines. GEM building relies on either automated processes that lack manual refinement and result in inaccurate models or manual curation, which is a time-consuming process that limits the continuous update of reliable GEMs. Here, we present a novel algorithm-aided protocol that overcomes these limitations and facilitates the continuous updating of highly curated GEMs. The algorithm enables the automatic curation and/or expansion of existing GEMs or generates a highly curated metabolic network based on current information retrieved from multiple databases in real time. This tool was applied to the latest reconstruction of human metabolism (Human1), generating a series of the human GEMs that improve and expand the reference model and generating the most extensive and comprehensive general reconstruction of human metabolism to date. The tool presented here goes beyond the current state of the art and paves the way for the automatic reconstruction of a highly curated, up-to-date GEM with high potential in computational biology as well as in multiple fields of biological science where metabolism is relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.