We elucidate grapevine evolution and domestication histories with 3525 cultivated and wild accessions worldwide. In the Pleistocene, harsh climate drove the separation of wild grape ecotypes caused by continuous habitat fragmentation. Then, domestication occurred concurrently about 11,000 years ago in Western Asia and the Caucasus to yield table and wine grapevines. The Western Asia domesticates dispersed into Europe with early farmers, introgressed with ancient wild western ecotypes, and subsequently diversified along human migration trails into muscat and unique western wine grape ancestries by the late Neolithic. Analyses of domestication traits also reveal new insights into selection for berry palatability, hermaphroditism, muscat flavor, and berry skin color. These data demonstrate the role of the grapevines in the early inception of agriculture across Eurasia.
BackgroundWild plants of Vitis closely related to the cultivated grapevine (V. v. vinifera) are believed to have been first domesticated 10,000 years BC around the Caspian Sea. V. v. vinifera is hermaphrodite whereas V. v. sylvestris is a dioecious species. Male flowers show a reduced pistil without style or stigma and female flowers present reflexed stamens with infertile pollen. V. vinifera produce perfect flowers with all functional structures. The mechanism for flower sex determination and specification in grapevine is still unknown.ResultsTo understand which genes are involved during the establishment of male, female and complete flowers, we analysed and compared the transcription profiles of four developmental stages of the three genders. We showed that sex determination is a late event during flower development and that the expression of genes from the ABCDE model is not directly correlated with the establishment of sexual dimorphism. We propose a temporal comprehensive model in which two mutations in two linked genes could be players in sex determination and indirectly establish the Vitis domestication process. Additionally, we also found clusters of genes differentially expressed between genders and between developmental stages that suggest a role involved in sex differentiation. Also, the detection of differentially transcribed regions that extended existing gene models (intergenic regions) between sexes suggests that they may account for some of the variation between the subspecies.ConclusionsThere is no evidence of differences of expression levels in genes from the ABCDE model that could explain the shift from hermaphroditism to dioecy. We propose that sex specification occurs after floral organ identity has been established and therefore, sex determination genes might be having an effect downstream of the ABCDE model genes.For the first time a full transcriptomic analysis was performed in different flower developmental stages in the same individual. Our experimental approach enabled us to create a comprehensive catalogue of transcribed genes across developmental stages and genders that will contribute for future work in sex determination in seed plants.Electronic supplementary materialThe online version of this article (doi:10.1186/1471-2164-15-1095) contains supplementary material, which is available to authorized users.
The domesticated grapevine spread along the Mediterranean basin from the primary Near East domestication area, where the greatest genetic diversity is found in its ancestor, the wild vine populations. Portuguese wild populations are on the southwestern fringe of the distribution of the Vitis vinifera L. ssp. sylvestris (C.C. Gmel.) Hegi in Europe. During the last Glacial Period they became isolated from the previous continuum that had been the territory of wild vine populations. Archaeological remains of domesticated vinifera grapevines in Portugal date back from 795 Before Common Era (BCE) in the lower Tagus river basin. In this work, 258 Portuguese vinifera varieties and sylvestris plants were characterized using 261 single nucleotide polymorphism (SNP) markers. The study of the genetic diversity of this local germplasm, its population structure and kinship, all framed in their historical and geographical backgrounds, revealed a complex network of first-degree relationships, where only Iberian varieties are involved. Some Iberian genotypes, like Alfrocheiro (Bruñal, in Spain), Sarigo (Cayetana Blanca), Mourisco Branco (Hebén), Amaral (Caiño Bravo), and Marufo (Moravia Dulce) are ancestors of a considerable fraction of all the autochthonous analyzed varieties. A part of the diversity developed was mostly local in some cases as shown by the closeness of several varieties (Vinhos Verdes) to the wild cluster in different analyses. Besides, several evidences of introgression of domesticated germplasm into wild vines was found, substantiating the high risk of genetic contamination of the sylvestris subspecies. All these findings together to the known matching between the wild maternal lineage of the Iberian Peninsula and an important number of Portuguese grapevine varieties (chlorotype A), point out that some of these varieties derive, directly or indirectly, from originally local wild populations, supporting the possible occurrence of secondary events of local domestication, or, at least, of an introgression process of wild into cultivated grapevines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.